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1 Introduction

The failure of the expectations hypothesis first documented by Fama and Bliss (1987) and

Campbell and Shiller (1991) has attracted enormous attention in the asset pricing literature

over the past decades. Various plausible risk factors that appear to capture bond return

predictability (forward spread (Fama and Bliss, 1987), forward rates factor (Cochrane and

Piazzesi, 2005), jump risk measure (Wright and Zhou, 2009), hidden term structure factor

(Duffee, 2011), and macroeconomic variables’ factor(s) (Ludvigson and Ng, 2009; Huang and

Shi, 2012), among many others) have been proposed. Despite this impressive progress the

fundamental challenge for uncovering a particular economic mechanism behind bond return

variation still stands out. Its resolution is equally important for market participants as well

as for monetary policy makers. Our paper focuses on this issue.

To that extent we propose a stylized general equilibrium model. This model can be viewed

as an extension of long-run risk models in Bansal and Yaron (2004, BY) and Bollerslev,

Tauchen, and Zhou (2009, BTZ). Bansal and Yaron (2004) emphasize importance of the

long-run risk in consumption growth for explaining the equity premium, while Bollerslev,

Tauchen, and Zhou (2009) show that richer volatility dynamics in consumption growth can

be successful in capturing future stock return predictability. Our model includes both long-

run risk and certain nontrivial volatility dynamics in consumption growth. It generates

a two-factor volatility structure for the endogenously determined bond risk premium, in

which the factors are explicitly related to the underlying volatility dynamics of consumption

growth where different volatility concepts load differently on the fundamental risk factors and

capture separately short-run and long-run risks of Treasury excess returns. In particular,

the difference between the risk-neutral and objective expectations of variation in interest

rates, the factor that we term the interest-rate variance risk premium (IRVRP), effectively

isolates the short-run risk factor associated with the volatility-of-volatility of consumption

growth. The long-run risk factor associated with volatility of consumption growth appears

to be captured by Fama and Bliss (1987) forward spread.
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Our main empirical findings exploit the informational content of the interest-rate variance

risk premium constructed from the U.S. interest rate swaps and swaptions markets. Why do

we use this data to measure the short-run risk? First, the interest rate derivatives markets

represent the largest segment of the U.S. fixed-income market and are important tools for

corporate treasurers, asset managers, and public institutions to hedge interest rate risk.1

According to the Bank of International Settlements, as of June 2012, the outstanding notional

value of interest rate swaps and swaptions exceeded $379 and $50 trillion, respectively, on a

net basis. This outstanding notional value combined together is much larger than the $52

trillion of all exchange-traded interest rate futures and options, such as Treasury futures and

futures options traded on Chicago Mercantile Exchange. In addition, a 2009 survey by the

International Swaps and Derivatives Association reports that 88.3% of the Fortune Global

500 companies use swaps and swaptions for hedging interest rate risk. Last but not least,

Dai and Singleton (2000) pointed to the similarities between the U.S. Treasury yields and

swap rates and swaption prices. Thus, it appears likely that the interest rate derivatives

markets can be informative for explaining variation in Treasury yields.2

Our first empirical finding connects time variation in the relatively short-horizon (one- to

three-month) bond risk premiums to the variation in the interest-rate variance risk premium.

The latter is driven entirely by the volatility-of-volatility factor with a positive loading

predicted by our theory. Consistent with this prediction, interest-rate variance risk premium

always loads positively on Treasury excess returns in the data and high(low) values of the

interest-rate variance risk premium are associated with subsequent high(low) Treasury excess

returns. Interest-rate variance risk premium alone explains a nontrivial share (40 to 50

percent) of the variation in one- and three-month Treasury excess returns, with the most

1Interest rate swaps play a central role in the whole financial system as swap rates reflect term financing
rates of major financial institutions. In fact, the floating leg of a plain vanilla swap is usually tied to the
3-month LIBOR, which serves as a benchmark rate for corporate treasurers, mortgage lenders, and credit
card agencies.

2Dai and Singleton noted, in particular, that “though the institutional structures of dollar swap and U.S.
Treasury markets are different, some of the basic distributional characteristics of the associated yields are
similar”.

2



explanatory power concentrated at the quarterly horizon. Moreover, combined with other

standard predictors such as forward spread or forward rate risk factors, IRVRP generates

even higher bond return predictability than on its own and contributes nontrivially (about

20 percent) to standard predictors.

Our second empirical result is that the interest-rate variance risk premium has limited

forecasting power for longer-maturity excess bond returns, while the forward spread is a

more important factor that captures information related to the variation of the long-run risk

factor. Thus, our findings are consistent with our model where both long-run and short-run

risk factors drive bond risk premium in equilibrium.

Finally, our calibration exercise suggests that the model fits the upward-sloping nominal

yield curve remarkably well. The key two factors in fitting the nominal yield curve are the

presence of the long-run risk in the model and inflation non-neutrality. As such, the long-

run risk state variable from the real side of the model affects nominal prices via inflation

channel. We reasonably calibrate inflation process while we leave the real side model param-

eters like the ones in BY and BTZ. The most important feature of the inflation process is

the negative correlation with consumption volatility shock, consistent with recent empirical

findings (Piazzesi and Shneider, 2007; Campbell, Sunderam, and Viceira, 2013; Bansal and

Shaliastovich, 2013). Without this feature, the nominal yield curve is downward-sloping.

It stands to reason that aggregate macro series, and consumption growth, in particu-

lar, are more volatile when investors are relatively more uncertain about economy growth

prospects compared to the periods with relatively low volatility environment. Thus, our

two-factor volatility structure of consumption risks can be linked to the studies that model

economic uncertainty. The idea of economic uncertainty as a potential risk factor has gained

attention recently, both for explaining variation in stock returns (Bollerslev, Tauchen, and

Zhou, 2009; Bloom, 2009; Drechsler, 2013) and in bond returns (Wright, 2011; Bansal and

Shaliastovich, 2013; Giacoletti, Laursen, and Singleton, 2015). The last two papers are

especially relevant to our study. Bansal and Shaliastovich (2013) link bond excess return
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variation to a variation in volatility in real activity and inflation – variables they interpret as

uncertainty - but they do not model uncertainty process explicitly. Giacoletti, Laursen, and

Singleton (2015) find that dispersion of beliefs about future interest rates that can be loosely

linked to investors’ uncertainty about interest rates is distinct from information about the

macroeconomy and can be useful in explaining variation in bond returns.

While the bond pricing empirical literature (Fama and Bliss, 1987; Campbell and Shiller,

1991) has documented predictability of long-horizon bond returns, bond predictability in

the short run did not receive much attention until recently. A growing literature argues for

the existence of the short-run and long-run risk components of the aggregate volatility to

study the variation of stock returns (Adrian and Rosenberg, 2008; Christoffersen, Jacobs,

Ornthanalai, and Wang, 2008; Branger, Rodrigues, and Schlag, 2011; Zhou and Zhu, 2012,

2013). Zhou (2009), in particular, emphasized importance of the short-run risk factor for

short-horizon (such as one-month) stock returns. A recent related paper by Ghysels, Le,

Park, and Zhu (2014) emphasises a short-run volatility component of bond yields as a useful

predictor for future excess returns, as opposed to a long-run volatility component that does

not predict Treasury excess returns. In the frame of this literature and to the best of our

knowledge, our paper is the first that explores short-horizon bond return predictability and

explains empirical findings within a structural two-factor volatility model framework. It

appears that while the volatility-of-volatility of consumption growth (short-run risk factor)

drives the variation in the short-horizon Treasury excess returns, the variation in long-horizon

returns appears to be related to a different kind, possibly more to a longer-run growth factor.

The long-run risk factor is important for matching the term structure of nominal interest

rates.

The rest of the paper is organized as follows. Section 2 presents our long-run risk model

with two different volatility types and inflation non-neutrality, and derives asset pricing

implications of the model; Section 3 discusses the calibration of the U.S. Treasury yield curve

implied by our model; Section 4 provides overview of the interest rate swaptions market and
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introduces the interest-rate variance risk premium; Section 5 describes all relevant data to

our empirical exercise; Section 6 discusses empirical results. Finally, Section 7 concludes.

2 Model and Asset Pricing

2.1 Preferences

We consider a discrete-time endowment economy with recursive preferences for early reso-

lution of uncertainty introduced by Kreps and Porteus (1978), Epstein and Zin (1989), and

Weil (1989):

Ut =
[
(1− δ)C

1−γ
θ

t + δ
(
EtU1−γ

t+1

) 1
θ

] θ
1−γ

, (1)

where δ is the time discount factor, γ ≥ 0 is the risk aversion parameter, ψ ≥ 0 is the

intertemporal elasticity of substitution (IES), and θ = 1−γ
1− 1

ψ

. Preference for early resolution

of uncertainty implies γ > 1
ψ

, which, in general, implies θ < 1. We will assume throughout

the paper that γ > 1 and ψ > 1, which implies θ < 0 and refer to preference for early

resolution of uncertainty as consistent with θ < 0. A special case of recursive preferences -

expected utility - corresponds to the case of γ = 1
ψ

(θ = 1).

Epstein and Zin (1989) show that the log-linearized form of the associated real stochastic

discount factor mt is given by:

mt+1 = θ ln δ − θ

ψ
gt+1 + (θ − 1)rc,t+1, (2)

where gt+1 = log
(
Ct+1

Ct

)
is the log growth of the aggregate consumption, rc,t+1 is the log

return on an aggregate wealth portfolio that delivers aggregate consumption as its dividend

each time period. Note that the return on wealth is different from the observed return on

the market portfolio because aggregate consumption is not equal to aggregate dividends.

Consequently, the return on wealth is not observable in the data. The nominal discount
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factor m$
t+1 is equal to the real discount factor minus expected inflation πt+1:

m$
t+1 = mt+1 − πt+1. (3)

2.2 Economy dynamics

To solve for the equilibrium asset prices we specify consumption and inflation dynamics.

Consumption dynamics features time-varying consumption growth rate gt and expected con-

sumption growth rate xt, time-varying volatility of consumption growth σ2
g,t and time-varying

volatility-of-volatility of consumption growth qt:

xt+1 = ρxxt + φeσg,tzx,t+1,

gt+1 = µg + xt + σg,tzg,t+1,

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1,

qt+1 = aq + ρqqt + φq
√
qtzq,t+1,

(4)

where the parameters satisfy aσ > 0, aq > 0, |ρσ| < 1, |ρq| < 1 and φq > 0. The vector

of shocks (zx,t+1, zg,t+1, zσ,t+1, zq,t+1) follows i.i.d. normal distribution with zero mean and

unit variance and shocks are assumed to be uncorrelated among themselves. The second pair

of equations in (4) is new compared to Bansal and Yaron (2004) and Bansal and Shalias-

tovich (2013). Stochastic volatility σ2
g,t+1 represents time-varying economic uncertainty in

consumption growth with time-varying volatility-of-volatility (vol-of-vol) measured by qt.
3

Since σ2
g,t directly affects variation in xt, the predictable component in consumption growth,

we will refer to σ2
g,t as the state variable that captures the long-run risk. The volatility-of-

volatility process qt can be thought of as the volatility risk or, the short-run risk. As we will

see later, this terminology will be supported by our empirical findings.

3Recent studies provided empirical support in favor of time-varying consumption growth volatility, e.g.,
Bekaert and Liu (2004), Bansal and Yaron (2005), Lettau, Ludvigson, and Wachter (2008), Bekaert, En-
gstrom, and Xing (2009), among others.
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In order for the real economy model (4) to have realistic implications for nominal bond

risk premiums, we conjecture a fairly rich inflation process motivated by previous literature.

Indeed, Bansal and Shaliastovich (2013) allow for expected inflation shocks to be correlated

(negatively) with expected consumption growth, and Zhou (2011) allows for a vol-of-vol shock

to affect inflation. We incorporate both of these features into expected inflation dynamics

πt+1:

πt+1 = aπ + ρππt + φπzπ,t+1 + φπgσg,tzg,t+1 + φπσ
√
qtzσ,t+1, (5)

where ρπ is a persistence and aπ
1−ρπ is the long-run mean of the inflation process. There are

three shocks that drive inflation process: (1) a constant volatility part φπ with an autonomous

shock zπ,t+1; (2) a stochastic volatility part φπσσg,t that works through consumption growth

channel zg,t+1; and (3) another stochastic volatility part φπσ
√
qt that works through the

volatility channel zσ,t+1. Exogenous inflation shock zπ,t+1 does not generate inflation risk

premium even in the presence of the time-varying volatility of this shock.4 In contrast,

the second and the third shocks generate inflation risk premium because real side shocks

(stochastic volatility of consumption growth and uncertainty) affect inflation. In addition,

since φπg and φπσ control inflation exposures to the growth and uncertainty risks, this process

implicitly violates inflation neutrality in the short run, but not in the long run.5

2.3 Pricing kernel

In equilibrium, the log wealth-consumption ratio zt is affine in expected consumption growth

xt, stochastic volatility of consumption growth σ2
t , and the vol-of-vol factor qt:

zt = A0 + Axxt + Aσσ
2
t + Aqqt. (6)

4The inability of the expected inflation process with only one (autonomous) shock even with stochastic
volatility to generate inflation risk premium is examined in Zhou (2009).

5There is no violation of inflation neutrality in the long run because unconditional expectation of inflation
process (5) is Eπt = aπ

1−ρπ .
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Campbell and Shiller (1988) show that the return on this asset can be approximated as

follows:

rc,t+1 = κ0 + κ1zt+1 − zt + gt+1, (7)

where κ0 = ln((1 + exp z̄)) − κ1z̄, κ1 = exp(z̄))
1+exp(z̄)

, and z̄ is the average wealth-consumption

ratio:

z̄ = A0(z̄) + Aσ(z̄)σ̄2 + Aq(z̄)q̄. (8)

The equilibrium loadings for (6) are derived in Appendix A.1:

Ax =
1− 1

ψ

1− κ1ρx
,

Aσ =
1

2θ(1− κ1ρσ)

[(
θ − θ

ψ

)2

+ (θκ1Axφe)
2

]
,

Aq =
1− κ1ρq −

√
(1− κ1ρq)2 − θ2κ4

1φ
2
qA

2
σ

θ(κ1φq)2
.

(9)

As in Bansal and Yaron (2004), recursive preferences along with the early resolution of un-

certainty are crucial in determining the sign of the equilibrium loadings of the state variables

in our model. When the intertemporal elasticity of substitution ψ > 1, the intertemporal

substitution effect dominates the wealth effect. In response to higher expected consumption

growth, agents invest more and, consequently, wealth-consumption ratio increases. There-

fore, the wealth-consumption ratio loading on the expected consumption growth is positive

(Ax > 0) whereas loadings on the volatility and volatility-of-volatility of consumption growth

are both negative (Aσ < 0 and Aq < 0) as in times of high volatility and/or uncertainty agents

sell off risky assets driving the wealth-consumption ratio down.6 The persistence of expected

growth shock ρx and time-varying volatility ρσ magnify the effect of the changes in these

state variables on the valuation ratio since investors perceive such macroeconomic changes

as long-lasting. Contrary to that, persistence of the volatility-of-volatility, ρq, roughly can-

6The solution for Aq represents one of a pair of roots of a quadratic equation, but we pick the one
presented in Eq. (9) as the more meaningful one. We elaborate on this choice in Section A.1.
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cels out in the Aq loading. This provides further support for interpretation of qt as a state

variable that captures relatively short-run economic risks.7

Using the solution for the wealth-consumption ratio we show in Appendix A.2 that the

conditional mean of the stochastic discount factor mt+1 is linear in the fundamental state

variables and the innovation in mt+1 pins down the fundamental sources and compensations

for risks in the economy:

mt+1 − Et[mt+1] = −λgσg,tzg,t+1 − λxσg,tzx,t+1 − λσ
√
qtzσ,t+1 − λq

√
qtzq,t+1, (10)

where the quantities of risks are time-varying volatility and volatility-of-volatility of con-

sumption growth, σg,t and
√
qt, respectively, and λg, λx, λσ, λq represent the market prices

of risk of consumption growth, expected consumption growth, volatility, and volatility-of-

volatility:

λg = γ, λσ = (1− θ)κ1Aσ,

λx = (1− θ)κ1Axφe, λq = (1− θ)κ1Aqφq.
(11)

The market price of consumption risk λg is equal to the coefficient of relative risk aversion γ.

Other risk prices crucially depend on our preference assumptions. When agents have pref-

erence for early resolution of uncertainty (θ < 0), the market price of expected consumption

risk is positive: λx > 0. In this case, positive shocks to consumption and expected consump-

tion cause risk premium to decrease as agents buy risky assets and drive wealth-consumption

ratio up. On the contrary, market prices of risk of volatility and volatility-of-volatility are

negative (λσ < 0 and λq < 0): Consistent with the so-called leverage effect, in response to

either type of volatility positive shock agents sell risky assets and drive wealth-consumption

ratio down and volatility risk premiums up. It is worth noting that these effects are not based

on the statistical linkages between return and volatility (as the endowment and volatility

7Bansal, Kiku, and Yaron (2012) check that their approximate solutions are very accurate when compared
against numerical solutions, used, e.g., in Binsbergen, Brandt, and Koijen (2012).
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shocks are uncorrelated) but arise endogenously in the equilibrium. In the absence of the

early resolution of uncertainty (γ = 1
ψ

and θ = 1) neither expected consumption, volatility,

or volatility-of-volatility compensate investors for these risks.

2.4 Asset prices

2.4.1 Real risk-free rate

The real risk-free rate is the negative of the (log) price of the real one-period bond:

rf,t = −p1
t = −Et[mt+1]− 1

2
Vart[mt+1]. (12)

Given the solutions for the first and second moments of the pricing kernel (2) provided in

Appendix A.2, the real risk-free rate is:

rf,t = −θ ln δ + γµg − (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]

+ [γ − (θ − 1)Ax(κ1ρx − 1)]xt

+

[
−(θ − 1)Aσ(κ1ρσ − 1)− 1

2
(θ − 1)2κ2

1A
2
xφ

2
e −

1

2
γ2

]
σ2
g,t

+

[
−(θ − 1)Aq(κ1ρq − 1)− 1

2
(θ − 1)2κ2

1(A2
σ + A2

qφ
2
q)

]
qt.

(13)

Note that the time variation in (13) crucially depends on the assumption of the preference

for early resolution of uncertainty (θ < 0). Without it (θ = 1) the risk-free rate reduces to

the standard power-utility case with no compensation for the fundamental economic risks:

rf = − ln δ + γµg − 1
2
γ2σ2

g . Moreover, negative θ implies positive risk premium for the long-

run risk state variable xt and negative risk premiums for both volatility factors (ignoring

Jensen’s correction).
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2.4.2 Nominal risk-free rate

The nominal risk-free rate is the negative of the (log) price of the nominal one-period bond.

Thus, it is equal to the real risk-free rate plus inflation compensation. The closed form for

the nominal risk-free rate is derived in Appendix A.4:

r$
f,t = −θ ln δ + γµg + aπ − (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]−

1

2
φ2
π

+ [γ − (θ − 1)Ax(κ1ρx − 1)]xt

+

[
−(θ − 1)Aσ(κ1ρσ − 1)− 1

2
γ2 − 1

2
(θ − 1)2(κ1Axφe)

2 − 1

2
φ2
πg − γφπg

]
σ2
g,t

+

[
−(θ − 1)Aq(κ1ρq − 1)− 1

2
(θ − 1)2κ2

1(A2
σ + A2

qφ
2
q)−

1

2
φ2
πσ + (θ − 1)κ1Aσφπσ

]
qt

+ ρππt.

(14)

Since inflation is not an autonomous process, besides having a direct effect on the nominal

rates, ρππt, it affects loadings on σ2
t and qt via additional terms, related to φπg and φπσ

coefficients, respectively. This results in inflation non-neutrality, which means that inflation

affects future real growth in the economy.

2.4.3 The n−period nominal bond price

A general recursion for solving for the n−period nominal bond price is as follows:8

P $,n
t = Et

[
M$

t+1P
$,n−1
t+1

]
. (15)

We assume that the (log) price of the n−period nominal bond p$,n
t follows the affine repre-

sentation of the real state variables xt, σ
2
t , qt and inflation πt:

p$,n
t = B$,n

0 +B$,n
1 xt +B$,n

2 σ2
t +B$,n

3 qt +B$,n
4 πt. (16)

8The solution for the n−period real bond price is provided in Appendix A.3.
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We solve for the nominal bond state loadings B$,n
i , i = 0, . . . , 4 using initial conditions

B$,0
i = 0, i = 0, . . . , 4 (since p$,0

t = 0) and the above recursion.9

2.4.4 Nominal bond risk premium

Let rx$,n−1
t+1 be the bond excess return from t to t+ 1 for an n−period nominal bond holding

one period. Then its expected value, or nominal bond risk premium, brp$,n
t , is given by the

(negative of) covariance between the nominal pricing kernel m$,n−1
t+1 and the nominal bond

price p$,n
t :

brp$,n
t = −Covt

[
m$
t+1, p

$,n−1
t+1

]
=
[
−(γ + φπg)B

$,n−1
4 φπg + (θ − 1)κ1AxB

$,n−1
1 φ2

e

]
σ2
g,t

+
[
((θ − 1)κ1Aσ − φπσ)(B$,n−1

2 +B$,n−1
4 φπσ) + (θ − 1)κ1AqB

$,n−1
3 φ2

q

]
qt

−B$,n−1
4 φ2

π

≡ β$,n−1
1 σ2

g,t + β$,n−1
2 qt −B$,n−1

4 φ2
π.

(17)

The first two terms in (17) reflect consumption and volatility risk premiums amplified by

the inflation shock parameters φπg and φπσ while the third term captures the autonomous

inflation shock through φπ. The effect of the long-run risk captured by Ax equilibrium loading

on the wealth-consumption ratio amplifies the overall contribution of the consumption risk,

σg,t. This effect is absent in Zhou (2011) and Mueller, Vedolin, and Zhou (2011), and thus,

makes it more difficult to explain the upward sloping term structure of the nominal yield

curve.

2.4.5 Bond return predictability

Bollerslev, Tauchen, and Zhou (2009) show that the equity variance risk premium – the

difference in expectations of the equity variance under risk-neutral and physical measures –

9The solution is provided in Appendix A.5, equation (71).
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is a useful predictor of time-variation in aggregate stock returns. Motivated by this result, we

apply this measure to understand time variation in bond returns.10 Time-varying variance

risk premium arises endogenously in the equilibrium and is given by:

VRPt = EQ
t

[
σ2
r,t+1

]
− EP

t

[
σ2
r,t+1

]
= (θ − 1)κ1

[
Aσ(1 + κ2

1A
2
xφ

2
e) + Aqκ

2
1φ

2
q(A

2
σ + A2

qφ
2
q)
]
qt.

(18)

A first and central observation here is that the time variation in the variance risk premium

is solely due to the time variation in qt state variable. If volatility-of-volatility is constant,

qt = q, the variance risk premium reduces to a constant (θ − 1)κ1Aσ(1 + κ2
1A

2
xφ

2
e)q con-

trary to empirical evidence that the variance risk premium is time-varying (e.g., BTZ). A

second observation is that although consumption growth risk σ2
g,t does not affect variance

risk premium directly it still has an indirect effect on it. If consumption volatility σ2
g,t is

not stochastic then the wealth-consumption ratio equilibrium loadings Aσ = 0 and Aq = 0

by construction and variance risk premium is zero. A third observation is that if there is

no recursive preference (θ = 1) then variance risk premium is zero by construction. Lastly,

positivity of the variance risk premium is guaranteed by negative θ along with with negative

Aσ and Aq.

The common factor qt in the nominal bond risk premium (17) and in the variance risk

premium (18) suggests that the latter should capture some time variation of the former.

Thus, for developing intuition to what extent distinct economic forces might be driving

bond premium, it is instructive to consider the following regression (ignoring a measurement

error):

brp$,n
t = a+ bVRPt, (19)

10While we do not derive the bond variance risk premium, in this particular model the same state variables
drive bond and equity variance risk premiums due to affine nature of the model.
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where the model-implied slope coefficient b is:

b =
Cov(brpnt ,VRPt)

Var(VRPt)
=

β$,n−1
2

(θ − 1)κ1

[
Aσ(1 + κ2

1A
2
xφ

2
e) + Aqκ2

1φ
2
q(A

2
σ + A2

qφ
2
q)
] (20)

and R2 is:

R2 =
b2Var(VRPt)

Var(brp$,n
t )

=

(
β$,n−1

2

)2

Var(qt)(
β$,n−1

1

)2

Var(σ2
g,t) +

(
β$,n−1

2

)2

Var(qt)
. (21)

As discussed above, the constant volatility-of-volatility (short-run risk) qt implies no time

variation in the variance risk premium, and therefore R2 ≡ 0. The other extreme case,

captured by the absence of the time-varying consumption volatility (long-run risk) σ2
g,t implies

R2 = 1 and the empirical predictability pattern cannot be replicated. Thus, formula (21)

illustrates that both types of risks, short- and long-run, affect variation in the bond risk

premium.

3 Calibration

In this section we discuss calibration of the nominal yield curve implied by our model (4) and

inflation process (5). We consider two benchmark cases, Bansal and Yaron (2004, BY) and

Bollerslev, Tauchen, and Zhou (2009, BTZ). Compared to BY, BTZ incorporate the time-

varying vol-of-vol factor, but in the absence of the long-run risk channel. We differ from

BTZ in two aspects: (1) we have the long-run risk state variable in the real side model; and

(2) we model inflation process in order to derive implications for the nominal bond prices.

We present all three models’ parameters (BY, BTZ, and ours) in Table 1.

Panel A provides calibration values for the real economy dynamics. We set preference

parameters δ = 0.997, γ = 8, and ψ = 1.5.11 Consumption growth parameters µg = 0.0015,

ρx = 0.979, φe = 0.001 are consistent with BY (and BTZ except for ρx = φe ≡ 0). Volatility

persistence ρσ = 0.978 is the same as in BY and BTZ, and aσ = (1 − ρσ)Eσ is set so that

11BY and BTZ use γ = 10, but in our model slightly lower value of γ works reasonably well.
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the unconditional expectation Eσ2
t = 0.02342, which is slightly higher than in BY and BTZ

because we find that this value matches better the nominal yield curve in the model. We set

the expected volatility-of-volatility level Eq = aq(1 − ρq)−1 = 10−9 so that aq = 2−10 given

ρq = 0.8. In addition, φq = 10−4. Our choice of ρσ and ρq is broadly consistent with the

estimates of Bollerslev, Xu, and Zhou (2013), who find that the long-run risk (proxied by

σ2
g,t) is more persistent than the short-run risk (proxied by qt). Thus, the calibrated model

is connected with the next empirical section where we show that these two types of risks in

the bond premia are disentangled.

Panel B provides calibration parameters for the expected inflation process. We set the

average annualized annualized inflation rate Eπ = 2% and persistence parameter ρπ = 0.95

in accordance with the current Fed’s inflation target and Great Moderation period overall.12

Implied aπ on a monthly basis is equal to Eπ(1−ρπ) = 0.02/12× 0.05 = 8× 10−5. The total

unconditional variance of the inflation process (5) is given by:

Var(π) =
1

1− ρ2
π

(
φ2
π + φ2

πgEσ2 + φ2
πσEq

)
. (22)

We calibrate variance-related parameters of (22) so that the total annualized unconditional

inflation volatility is 2%. Since ρπ = 0.95, Eσ2 = 0.02342, Eq = 10−9, the term in parentheses

in (22) on a monthly basis is: φ2
π + φ2

πg × 0.02342 + φ2
πσ × 10−9 = 0.022/12 × (1 − 0.952) =

3.25 × 10−6. Further, we assume that the first (autonomous) shock contributes one half to

the total variance while the other two shocks contribute equally to the remaining half of the

total variance of the inflation process.13 Thus, the contribution of the first shock to the total

inflation variance is 0.5×3.25×10−6 = 1.625×10−6, implying φπ = 0.0013. The contribution

of the second and third shocks are equal to each other and to 0.25×3.25×10−6 = 8.125×10−7.

12These numbers may be justified by the data after 1980s and especially after 2008, when Fed launched
unprecedented measures of accommodative monetary policy, namely, quantitative easing. Our expected
inflation rate is lower than the one in Bansal and Shaliastovich (2013), who set it at 3.61% (see their Table
5).

13Equal distribution of variance among the shocks results in slight overshooting of the model-implied
interest rates levels relative to those in the sample.
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Therefore, the implied φπg = (8.125× 10−7/0.02342)
1/2

= −0.0385. The negative sign of

φπg is motivated by previous empirical findings (Piazzesi and Shneider, 2007; Campbell,

Sunderam, and Viceira, 2013; Bansal and Shaliastovich, 2013). In particular, Bansal and

Shaliastovich (2013) use SPF survey data for one-year ahead consensus inflation forecast over

1969 - 2010 sample and a latent factor for the expected consumption growth to estimate

relationship between the two. They find that expected inflation negatively affects future

consumption growth thus suggesting non-neutrality of inflation. Last, the implied φπσ =

(8.125× 10−7/10−9)
1/2

= 28.5.

Figure 1 reports our calibration results. Both panels show the average nominal yield

curve out to 10 years (blue solid line) in January 1991 - December 2010 sample period and

the calibrated nominal yield curve (red dashed line) implied by our model (Panel A) and by

our modified model in the absence of the long-run risk channel xt (Panel B). It is obvious

from Panel A that our model matches very well the levels of the nominal yields and captures

the slope the yield curve too. The 1-, 5-, and 10-year model-implied yields are 3.71%, 5.14%

and 5.58% relative to observed yields of 4%, 4.95%, and 5.65% at corresponding maturities.

Figure on Panel B shows that without long-run risk the model is not successful in fitting the

nominal upward-sloping yield curve as it generates downward-sloping yield curve, even with

the presence of time-varying economic uncertainty.14 To understand the effect of the long-

run risk factor better, it is useful to write down the nominal yields as an affine combination

of state variables:

y$,n
t = − 1

n

[
B$,n

0 +B$,n
1 xt +B$,n

2 σ2
t +B$,n

3 qt +B$,n
4 πt

]
, (23)

where B$,n
1 , B$,n

2 , B$,n
3 , B$,n

4 are model-implied nominal bond price loadings provided in Ap-

pendix A.5. The equilibrium nominal yield loadings are plotted in Figure 2.15 In our model,

14Bansal and Shaliastovich (2013) fit the term structure of interest rates for the short- and intermediate-
term yields (up to five years only), whereas our model quantitatively matches the level and slope of the
nominal term structure from one- to ten-year interest rates.

15Nominal yield loadings are nominal bond price loadings with a negative sign.
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nominal yields hedge expected consumption and inflation risks. As the top left panel of Fig-

ure 2 shows, nominal yields increase when expected consumption is high because −B$,n
1 > 0,

and the effect is stronger for higher n. Intuitively, a negative shock to expected consump-

tion drives bond prices up and yields down and a positive shock to expected consumption

drives bond prices down and yields up. The same effect is obvious for expected inflation as

−B$,n
4 > 0 and this loading is also increasing with maturity (bottom right panel). The top

right panel shows the effect of consumption volatility shock on nominal yields. Corresponding

loading −B$,n
3 manifests negative correlation of expected inflation and consumption growth

that we discussed above. Initial effect of both positive consumption volatility and volatility-

of-volatility shocks on yields is negative although this effect mean-reverts in the long-run.

Given that the steady state values of consumption volatility and volatility-of-volatility pro-

cesses are relatively small, long-run risk has the largest effect on nominal yields and helps

to fit the upward-sloping nominal yields curve dramatically. Therefore, the slope of the

term structure of interest rates appears to be tightly linked to the slow-moving predictable

component in consumption growth.

4 Empirical Measurements

The theoretical model outlined in Section 2 suggests that the interest-rate variance risk

premium, the difference between the market’s risk-neutral expectation of future interest

rate return variation and the objective expectation of the future interest rate variation, can

serve as a useful predictor for the Treasury bond premiums. To measure the interest-rate

variance risk premium and investigate this conjecture, we rely on the new nonparametric

“model-free” variation concept derived from the interest rate swaptions market (for the

risk-neutral expectation of the future interest rate return variation) and from the interest

rate swap market (for the expectation of the future interest rate return variation under

the physical measure). To that extent, we first provide an overview of the mechanics of
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the interest rate swaptions (Section 4.1), then discuss the construction of swaption-implied

variance (Section 4.2), and, finally, outline the construction of the realized interest rate swap

variance (Section 4.3).

4.1 Interest rate swaptions

Consider a forward start fixed versus floating interest rate swap with a start date Tm and

maturity date Tn. The fixed annuity payments are made on a pre-specified set of dates,

Tm+1 < Tm+2 < · · · < Tn, with the intervals equally spaced by δ, which equals six months in

the U.S. swaption market. The floating payments tied to the three-month LIBOR are made

quarterly at Tm+1 − δ/2, Tm+1, Tm+2 − δ/2, Tm+2, · · · , Tn − δ/2, and Tn.16

At time Tm, the value of the floating leg equals par, and the time–t value of the floating

leg is D (t, Tm), where D (t, Tm) is the time–t price of a zero-coupon bond maturing at time

Tm. The time–t value of the fixed leg is equal to D (t, Tn) + Am,n (t), where Am,n (t) ≡∑n
j=m+1 D (t, Tj) is the present value of an annuity associated with the fixed leg of the

forward swap contract, also known as the “price value of the basis point” (PVBP) of a swap.

The time-t forward swap rate, Sm,n (t), is the rate on the fixed leg that makes the present

value of the swap contract equal to zero at t:

Sm,n (t) =
D (t, Tm)−D (t, Tn)

Am,n (t)
. (24)

This forward swap rate becomes the spot swap rate Sm,n (Tm) at time Tm.

A swaption gives its holder the right but not the obligation to enter into an interest rate

swap either as a fixed leg (payer swaption) or as a floating leg (receiver swaption) with a

pre-specified fixed coupon rate. The underlying security of a swaption is a forward start

interest rate swap contract. For example, let Tm be the expiration date of the swaption, K

be the coupon rate on the swap, and Tn be the final maturity date of the swap. The payer

16We assume that both the fixed and floating legs pay $1 principal at Tn.

18



swaption allows the holder to enter into a swap at time Tm with a remaining term of Tn−Tm

and to pay the fixed annuity of K. At time t, this swaption is usually called a (Tm − t) into

(Tn − Tm) payer swaption, also known as a (Tm − t) by (Tn − Tm) payer swaption, where

(Tm − t) is the option maturity and (Tn − Tm) is the tenor of the underlying swap. Because

the value of the floating leg will be par at time Tm, the payer swaption is equivalent to a put

option on a bond with a coupon rate K and a remaining maturity of Tn − Tm, where the

strike of this put option is $1. Similarly, the receiver swaption is equivalent to a call option

on the same coupon bond with the strike price of $1.

Let Pm,n(t;K) and Rm,n(t;K) denote the time-t value of a European payer and receiver

swaption, respectively, expiring at Tm with strike K on a forward start swap for the time

period between Tm and Tn. At the option expiration date Tm, the payer swaption has a

payoff of

[1−D (Tm, Tn)−KAm,n (Tm)]+ = Am,n (Tm) [Sm,n (Tm)−K]+ ,

where Eq. (24) evaluated at Tm is used. Therefore, the time-t (< Tm) price of this payer

swaption is given by

Pm,n(t;K) = EQ
t

{
e−

∫ Tm
t r(s)dsAm,n (Tm) [Sm,n (Tm)−K]+

}
= Am,n (t)EAm,n

t

{
[Sm,n (Tm)−K]+

}
, (25)

where Q is the risk-neutral measure and Am,n is the annuity measure with Am,n (t) as the

numeraire. That is, the Radon-Nikodym derivative of the annuity measure with respect to

the risk-neutral measure is dAm,n
dQ = e−

∫ Tm
t r(s)ds Am,n(Tm)

Am,n(t)
. Similarly, the time-t price of the

receiver swaption is given by

Rm,n(t;K) = Am,n (t)EAm,n
t

{
[K − Sm,n (Tm)]+

}
. (26)

We note from (25) and (26) that a swaption is tied to two sources of uncertainty: (i) the
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forward swap rate Sm,n (t), and (ii) the swap’s PVBP realized at time Tm, Am,n (Tm). The

change of measure from Q to Am,n allows us to focus on the risk of Sm,n (t) and facilitates

the pricing of swaptions.

4.2 Measure of swaption-implied variance

Variance swaps on equities allow one to hedge the risk of the realized variance of stock

returns. The variance contract on swap rates that we develop below allows us to hedge the

risk of the realized variance of interest rate swap rates. At time t, the short leg promises to

pay the long leg at Tm:

Am,n (Tm)

[(
ln
Sm,n(t+ ∆)

Sm,n(t)

)2

+

(
ln
Sm,n(t+ 2∆)

Sm,n(t+ ∆)

)2

+ · · ·+
(

ln
Sm,n(Tm)

Sm,n(Tm−∆)

)2
]
, (27)

the product of the realized variance of the log forward swap rate logSm,n(t) over [t, Tm] and

the PVBP Am,n (Tm). In return, the long leg pays the short leg Am,n (Tm)×VPm,n (t) at Tm,

where VPm,n (t) is determined at time t such that the value of the contract equals zero at

initiation. We refer to VPm,n (t) as the variance price of the forward swap rate.

The variance contract on swap rates uses the sum of squared log changes to measure the

realized variance of forward swap rates over [t, Tm]. Similar to the payoff of a swaption, the

payoff of the variance contract on swap rates depends on the realized variance of forward

swap rates as well as an annuity discount factor. This design makes it convenient to obtain

the variance price VPm,n (t) by a change of the risk-neutral measure to the corresponding

annuity measure. It also makes it easier to replicate the variance contract using swaptions

given the similar payoff structures. The variance price VPm,n (t) is the Am,n-expectation of

the quadratic variation of the forward swap rate Sm,n(t) over [t, Tm].

Similar to the equity variance swap whose payoff can be replicated with a portfolio of

out-of-the-money equity options, the time-varying payoff of the variance contract on swap

rates can be replicated with a portfolio of out-of-the-money swaptions written on Sm,n(t).
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In particular, generalizing the algorithm used by CBOE in constructing VIX, we have

IVm,n (t) ≡ 2

Am,n (t)

{∫
K>Sm,n(t)

1

K2
Pm,n(t;K)dK +

∫
K<Sm,n(t)

1

K2
Rm,n(t;K)dK

}
, (28)

where Tm − t is the time-to-maturity for the variance swap. As observed from (28), this

replication portfolio contains positions in out-of-the-money swaptions with a weight that is

inversely proportional to the squares of their strikes. A similar replication portfolio based on

equity options has been employed in the literature to construct model-free implied volatility

measures (Bollerslev, Tauchen, and Zhou, 2009; Carr and Wu, 2009).

4.3 Interest-rate realized variance

In order to quantify the actual return variation of interest rates, we follow the methodology

of Bollerslev, Tauchen, and Zhou (2009). Let pnt be the logarithmic price of the n-period

zero-coupon bond at time t. The realized variation over the discrete time interval [t − 1, t]

can then be measured in a “model-free” way as follows:

RVt =
M∑
i=1

[
pn(t− 1 +

i

M
)− pn(t− 1 +

i− 1

M
)

]2

→ Return variation(t− 1, t), (29)

where the convergence to the return variation relies on M → ∞,that is, on an increas-

ing number of within-the-period price observations. Prior literature (Andersen, Bollerslev,

Diebold, and Ebens, 2001; Andersen, Bollerslev, Diebold, and Labys, 2001; Barndorff-Nielsen

and Shephard, 2004; Wright and Zhou, 2009; Bollerslev, Tauchen, and Zhou, 2009) demon-

strates that this “model-free” realized variance measure based on high-frequency intraday

data results in more accurate ex post observations of the true (unobserved) return variation

compared to more traditional sample variances based on daily or coarser frequency returns.

In addition, RVt measure provides a nonparametric empirical analog to σ2
r,t that appears in

the definition of the variance risk premium (18).
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4.4 Interest-rate variance risk premium (IRVRP)

The interest-rate variance risk premium is defined as the difference between the market’s

risk-neutral expectation of the future swap rate variation over [t, Tm] under the annuity

measure Am,n and the corresponding expectation under the physical measure over the same

time interval

IRV RPm,n(t) ≡ IVm,n(t)− RVm,n(t). (30)

5 Data and Estimates

In this section we discuss the data, construction, and the estimates of the IRVRP, then

describe Treasury yield data, and other control variables used in predictive regressions in

Section 6.

5.1 Estimates of the interest-rate variance risk premium

We use interest rate swaptions and swap market data for computing implied and realized

variances of interest rates, respectively. We compute then the IRVRP as a difference between

the implied variance and (the expectation of) the realized variance.

5.1.1 Construction of the implied variance of interest rates

To construct the implied variance (28) we need two ingredients: First, we need to construct

Am,n(t) and Sm,n(t), the PVBP of a swap and the forward swap rate curves, respectively;

Second, we need to obtain Pm,n(t;K) and Rm,n(t;K), payer and receiver swaption prices,

respectively. We discuss the construction of these objects below.

To construct Am,n(t) and Sm,n(t) curves, we first obtain daily LIBOR rates with matu-

rities of 3, 6, 9, and 12 months, as well as daily 2-, 3-, 4-, 5-, 7-, 10-, 15-, 20-, 25-, 30-, and

35-year spot swap rates between February 11, 2002 and January 31, 2013 from J.P. Morgan.

February 11, 2002 is the first day on which we have the intraday swap quotes from Barclays
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Capital that we need for constructing the proxy for the realized variance of interest rates.

We bootstrap the swap rates to first obtain daily zero-coupon curves. Then we construct

the PVBP curve Am,n (t) and the forward swap rate curve Sm,n (t) up to 35 years according

to (24).17

We focus on 1-, 3-, and 12-month expiry swaptions for the 10-year tenor in line with the

frequencies of our predictive regressions. The market convention is to quote swaption prices

in terms of their log-normal implied volatility based on Black (1976) formula.18

We combine daily observations of (European) swaption prices from J.P. Morgan and

Barclays Capital, two of the largest inter-dealer brokers in interest rate derivatives markets.

The swaption prices from J.P. Morgan are available starting from June 1, 1993 with five

strikes, namely, at-the-money-forward (ATMF), ATMF ± 100, and ATMF ± 50 basis points.

The swaption prices from Barclays are available from December 1, 2004 with thirteen strikes,

namely, ATMF, ATMF ± 200, ATMF ± 150, ATMF ± 100, ATMF ± 75, ATMF ± 50,

and ATMF ± 25 basis points. In our empirical analysis, we use swaption prices from J.P.

Morgan from February 11, 2002 through December 1, 2004 and those from Barclays after

December 1, 2004.19

To obtain swaption payer Pm,n(t;K) and receiver Rm,n(t;K) prices on a continuum of

strikes as requested by Eq. (28), we follow Carr and Wu (2009) and Du and Kapadia (2012)

and interpolate implied volatilities across the range of observed strikes and use implied

volatility of the lowest (highest) available strike to replace those of the strikes below (above).

We further generate 200 implied volatility points that are equally spaced over a strike range

17We first use a standard cubic spline algorithm to interpolate the swap rates at semiannual intervals from
one year to 35 years. We then solve for the zero curve by bootstrapping the interpolated par curve with
swap rates as par bond yields. The day count convention is 30/360 for the fixed leg, and Actual/360 for the
floating leg.

18Many market participants think in terms of normal (or absolute or basis point) implied volatilities–the
volatility parameter that, plugged into the normal pricing formula, matches a given price–as they are more
uniform across the swaption grid and more stable over time than log-normal implied volatilities.

19All our empirical results remain unchanged if we use only the J.P. Morgan swaption data rather than a
combination of the J.P. Morgan and Barclays Capital swaption data. Recall that we start our sample from
February 11, 2002, the first day when we have intraday swap rates data available from Barclays Capital, the
data that we use for constructing realized variance of interest rates.
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with moneyness between 0.9×Sm,n(t) and 1.1×Sm,n(t), where Sm,n(t) is the current forward

swap rate on each day. This implied volatility/strike grid together with PVBP and forward

swap curves allows us to compute the empirical counterpart for the implied variance (28).

5.1.2 Construction of the realized variance of interest rates

Next, we construct the “model-free” realized variance of interest rates. To do this, we use

intraday 10-year interest rate swap quotes from February 11, 2002 and January 31, 2013

obtained from Barclays Capital. The data cover the period from 8:20 to 15:00 New York

time each day for a maximum of 80 five-minute observations per day.20 Ideally, the sampling

frequency for the computation of the realized variance should go to infinity. However, in

practice high-frequency data is affected by a number of microstructure issues such as price

discreteness, bid-ask spreads, and nonsynchronous trading effects. A number of studies (An-

dersen, Bollerslev, Diebold, and Labys, 2000; Hansen and Lunde, 2006; Bollerslev, Tauchen,

and Zhou, 2009), suggest that a five-minute sampling frequency provides a reasonable choice.

Hence, we compute five-minute continuously compounded returns on a hypothetical 10-year

zero-coupon bond as a difference between the 10-year swap rates at the five-minute inter-

vals. We then square these differences to obtain the “model-free” proxy for the daily realized

variance RVt given by Eq. (29).

IRVRP given by Eqs. (18) and (30) is forward-looking and requests the expectation of

the realized variance of interest rates. In contrast to the “model-free” measures of implied

and realized variances constructed above, we need an explicit forecasting model for the RVt.

While numerous forecasting models have been proposed in the literature (see, e.g., Andersen,

Bollerslev, and Diebold (2006)), here we follow Bollerslev, Tauchen, and Zhou (2009) and

rely on the heterogeneous autoregressive volatility model of realized volatility (HAR-RV),

suggested by Andersen, Bollerslev, and Diebold (2007) and Corsi (2009). The model is

simple enough to implement yet it appears to produce highly accurate volatility forecast

20In this set-up we follow Wright and Zhou (2009) who used this time period to estimate bond variance
and jump risk premia in the U.S. Treasury futures market.
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as the above authors have shown. It aims to parsimoniously capture the long memory

behavior of volatility by incorporating daily, weekly, and monthly realized variances into the

one-month ahead variance forecast:

RVt+22,mon = α + βDRVt + βWRVt,week + βM , RVt,mon + εt+22,mon, (31)

where RVt,mon = 1
22

∑21
j=0 RVt−j and RVt,week = 1

5

∑4
j=0RVt−j are the monthly and weekly

realized variances, respectively.

5.1.3 Empirical measure of the interest-rate variance risk premium

The forward-looking IRVRP is computed then as a difference between the expectations of

interest rate variances under the Q and P measures as defined in Eq. (30). Figures 3, 4, and

5 plot implied variance, expected variance, and resulting interest-rate variance risk premium.

First result from these figures is that the variance risk premium is almost everywhere positive

suggesting that market participants seek compensation for variance exposure. Second, mar-

ket variance risk premium increased dramatically during the NBER recession, represented

by the shaded blue bar on each chart.21 Such an increase general captures the spirit of

increased uncertainty amid recessions: this is a reason that we loosely refer to the variance

risk premium a as a compensation for uncertainty.22 In addition, swaption-based IRVRP

increased notably amid European financial crisis in the second half of 2011.

5.2 Treasury yield data

In our empirical exercise we use Fama-Bliss data set of monthly zero-coupon Treasury yield

data from CRSP to compute excess returns for two to five-year Treasury bonds from February

2002 to January 2013. We denote the h−period log return on a τ−year zero-coupon note

with the log price p
(τ)
t as r

(τ)
t+h = p

(τ−h)
t+h − p(τ)

t , and the h−period log return in excess of the

21There was only one NBER recession in our sample period.
22Bloom (2009) provides a similar argument about the relationship between uncertainty and volatility.
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h−period risk-free rate y
(h)
t as rx

(τ)
t+h = r

(τ)
t+h − y

(h)
t . In our application we consider h = 1, 3,

and 12 months.23 The summary statistics of the Treasury excess returns is presented in

Panel A of Table 2. A notable difference between one-year and one-month returns is that

the latter are much less persistent than the former.

5.3 Other predictive variables

In addition to the variance risk premium, we include two other variables in our predictive

regressions that are shown to capture variation in long-horizon bond returns. First, we

use the classical Fama and Bliss (1987) predictor, the forward spread factor, defined as the

spread between the forward rate of a particular maturity and the risk-free rate. Second, we

use Cochrane and Piazzesi (2005) factor that is an affine combination of forward rates. Both

variables are computed using Fama-Bliss data set, downloaded from CRSP and confined to

our sample.

Panel B of Table 2 summarizes statistics for the predictive variables. The forward spread

is extremely persistent, with AR(1) coefficients between 0.92 and 0.97. IRVRP has persis-

tence coefficient of 0.87, while Cochrane-Piazzesi factor is the least persitent factor, with

AR(1) coefficient of 0.72. According to Panel A, 1-year Treasury excess returns have per-

sistence similar to that of forward spread factors, while 1-month excess returns of Treasury

bonds are less persistent and closer in persistence to IRVRP.

6 Empirical Results

In this section we discuss how well the interest-rate variance risk premium – endogenous

proxy for economic uncertainty in our model – predicts Treasury excess returns. To assess

23Note that maturities τ − 1 month and τ − 3 months, with τ = 2, . . . , 5 years are not in the Fama-Bliss
data set. Therefore, the prices of these securities are obtained via a linear interpolation of adjacent maturity
securities’ prices.
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its predictability content, we run the following regressions:

rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)IRV RP

(m,n)
t + β

(τ)
2 (h)FS

(τ)
t + CPt + ε

(τ)
t+h, (32)

where rx
(τ)
t+h is the h−period excess return on a τ−year Treasury synthetic zero-coupon

note, IRV RP
(m,n)
t is the interest-rate variance risk premium that corresponds to the n-

period swaption expiry on the m-period forward swap rate, FS
(τ)
t is (τ)−maturity Fama-

Bliss forward spread, and CPt is Cochrane-Piazzesi forward-rate factor. Excess returns are

computed using Fama-Bliss discount bond data set. For each bond maturity (τ = 2, 3, 4, 5

years), and each return horizon (h = 1, 3, 12 months) we run univariate regressions as well as

joint regressions on a subset of factors and also run a kitchen-sink-type regression using all

three factors. IRV RP
(m,n)
t is constructed in Section 5.1 using U.S. interest rate derivatives

data. In our empirical exercise we use forward swap tenor m = 10 years, and swaption

expiries n = 1, 3, 12 months. The relatively short life period of the interest rate derivatives

markets and intraday swap data availability limit the sample period of our regressions.

6.1 Predictability with the interest-rate variance risk premium

We report empirical results for three different bond holding period return (HPR) horizons

and for interest-rate variance risk premiums based on three different swaption expiries. Thus,

we have nine tables in total. Tables 3, 4, and 5 report regression results 1-, 3-, and 12-month

HPR for the variance risk premium based on the 1-month expriry swaptions on the 10-year

forward swap rate. Likewise, tables 6, 7, and 8 report regression results for 1-, 3-, and 12-

month HPR for the variance risk premium based on the 3-month expriry swaptions on the

10-year forward swap rate. Finally, tables 9, 10, and 11 report regression results for the same

HPR horizons for the variance risk premium based on the 12-month expiry swaptions on the

10-year forward swap rate. In all these tables we present univariate results for the variance

risk premium, forward spread, and Cochrane-Piazzesi factors, as well as joint regressions for
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two and three Treasury excess return predictors. Four panels in each table correspond to 2-,

3-, 4-, and 5-year maturity of Treasury synthetic zero-coupon notes.

6.1.1 Results with 1-month expiry swaption IRVRP

In this section we discuss results of Tables 3, 4, and 5. As Table 3 shows, excess returns for all

maturities load positively and significantly on the 1-month expiry swaption-based variance

risk premium, with solid Newey-West corrected t-statistics above or around 4. The adjusted

R2 of these univariate regressions (column 2) varies from 43 to 25 percent and declines

with bond maturity. Nevertheless, even for a 5-year maturity, swaption-based variance risk

premium alone explains 25 percent of excess return variation. In addition, IRVRP remains

significant in the presence of Fama-Bliss factor (column 5) and Cochrane-Piazzessi factor

(column 6), and highly significant in the multi-variate regression with both factors (column

7), where all three factors are included. IRVRP in the predictive regressions appears to add

a nontrivial forecasting power: for example, when it is added to CP factor, the regression’s

adjusted R2 increases from 14 percent to 45 percent for 2-year returns; when it is added

to Fama-Bliss factor, the adjusted R2 increases from 37 percent to 71 percent. Such an

impressive marginal increase in R2 of about 30 percentage points due to added IRVRP

declines with maturity. For 5-year excess returns, marginal increase due to IRVRP is 6

and 17 percentage points when added to the forward spread and Cochrane-Piazzesi factors,

respectively (Panel D). Nevertheless, such a marginal increase in explanatory power appears

to be economically significant for all maturities. As a comparison, Bollerslev, Tauchen,

and Zhou (2009) find that the equity variance risk premium adds six percentage points in

explanatory power in addition to the log of price-earning ratio that by itself explains seven

percentage points of variation in future quarterly stock returns (see Table 4 in their published

RFS version). As such, this table confirms our intuition that the interest-rate-derivatives-

based variance risk premium appears to contain useful information for predicting Treasury

excess returns beyond that contained in the standard predictors. Moreover, these results
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show that, in a univariate setting, variance risk premium has higher explanatory power for

short-horizon Treasury excess returns at all maturities compared to Cochrane-Piazzesi factor

and higher explanatory power than Fama-Bliss factor at a 2-year maturity.

Regression results in Table 4 (3-month holding period Treasury excess returns) are

broadly similar to Table 3. IRVRP is statistically significant at the 1% level in all four

panels in the univariate regressions and not subsumed by Fama-Bliss and Cochrane-Piazzesi

factors for Treasury 2, 3, and 4-year Treasury notes. However, IRVRP loses its signifi-

cance in the presence of the Fama-Bliss factor for the 5-year (longest-maturity considered)

Treasury note (Panel D) but it withstands its significance and is not subsumed by the

Cochrane-Piazzesi factor. Additional insight from Panel D contends that the forward spread

factor better captures short-horizon returns variation of the long-horizon bonds compared

to Cochrane-Piazzesi factor, at least in our sample. The overall explanatory power of the

IRVRP is smaller compared to that in Table 3, but it still adds some reasonable amount to

either forward spread or Cochrane-Piazzesi factor in most of the reported regressions in this

table.

Regression results in Table 5 (one-year Treasury excess returns) are notably weaker than

in either Table 3 or Table 4, with the IRVRP insignificant for all maturities and with the

adjusted R2 of around 7 percent in Panel A (2-year Treasury notes) and almost negligible

in Panel D (5-year Treasury notes). This result further supports the conjecture that the

IRVRP’s content appears to be fairly short-lived but important for capturing variations in

Treasury nominal securities over the short horizons.24

24In our sample forward spread and Cochrane-Piazzesi factors have considerably lower R2’s than in the
original papers. This peculiarity is due to the sample period of our study that is confined by the availability
of the interest-rate derivatives data. This sample period is affected to a large extent by the zero-lower bound
period and QE-related events. Outside of the ZLB period and QE events, forward spread still retains its
predictive power for one-year Treasury excess returns.
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6.1.2 Results with 3-month expiry swaption IRVRP

Tables 6, 7, and 8 present results with IRVRP constructed from the 3-month expiry of the

interest rate swaptions. Table 6 highlights the strongest result in our paper. The IRVRP

in univariate regressions is highly significant in explaining monthly returns of Treasury se-

curities with Newey-West corrected t-stats around 6. Alone, IRVRP appears to explain

from one half (2-year Treasury notes, Panel A) to roughly one third (5-year Treasury notes,

Panel D) of excess return variation. IRVRP also explains notably more of return variation

than the forward spread factor (50 versus 37 percent, Panel A) and considerably more than

Cochrane-Piazzesi factor (14 percent, Panel A). Additional marginal explanatory power of

3-month IRVRP ranges across maturities from 40 to 8 percentage points (when added to

the forward spread factor) and from 40 to 22 percentage points (when added to CP factor).

Also, the statistical significance of the IRVRP is not subsumed by either of the two predic-

tors considered at any maturity and remains significant at the 1 percent level of statistical

significance.

Table 7 is similar to Table 6. IRVRP is statistically significant at the 1 percent level for

all maturities in univariate regressions and the adjusted R2 ranges from 38 to 10 percentage

points based on the note maturity. It further adds nontrivial marginal explanatory power to

other factors. Yet, Panel D shows that the IRVRP partly loses its significance to 10 percent

level or slightly lower when added to the forward spread factor (Panel D, column 5) and in

the joint regression (Panel D, column 7).

Results of table 8 in general mirror those of Table 5. Overall, tables 6, 7, and 8 fur-

ther strengthen our conjecture that the IRVRP is economically important for short-horizon

returns generally for all considered Treasury note maturities.

6.1.3 Results with 12-month expiry swaption IRVRP

Results based on the 12-month expiry swaptions (Tables 9, 10, and 11) generally repeat

previous results. 12-month swaption expiry IRVRP is still highly significant at the 1 percent

30



level and is not subsumed by other predictors when applied to monthly and quarterly (short-

run) Treasury excess returns. It loses its explanatory power for annual (long-run) Treasury

excess returns. This last set of reported results allows us to further argue that regardless

of the swaption expiry, IRVRP is the robust factor in explaining short-run Treasury excess

returns as opposed to long-run Treasury excess returns, where other economic forces appear

to be at work.

To summarize, empirical results discussed in Sections 6.1.1 - 6.1.3 convey, that based on

the adjusted R2 from regressions, the 3-month swaption-expiry-based IRVRP appears to be

the strongest candidate among the three IRVRPs (that correspond to 1-, 3-, and 12-month

swaption expiries) that captures useful information from interest rate derivatives market for

explaining and predicting the Treasury excess returns.

6.2 Some additional checks

In addition to the interest-rate variance risk premium, we have used two alternative specifi-

cations of the variance risk premium in regressions (32).

First, we replaced the IRVRP with the equity VRP since the latter one has been shown

to be a useful predictor of future stock returns (Bollerslev, Tauchen, and Zhou, 2009). We

found that, irrespective of the holding period horizon, equity variance risk premium is only

marginally relevant for predicting Treasury excess returns. Mueller, Vedolin, and Zhou

(2011) also found that equity variance risk premium (joint with CP factor) explains rather

a small fraction of variation in Treasury bond returns. The difference between explanatory

powers of equity and interest-rate variance risk premiums in predicting bond returns might

in part be explained by the differences in traders’ clientele in the equity and derivatives

markets as well as the persistence profile of the variance risk premiums in both markets:

the interest-rate variance risk premium appears to be much more persistent (see Panel B of

Table 2) than the equity variance risk premium.25

25In our sample, AR(1) coefficient for the equity VRP is 0.28.
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Second, we run regressions with the IRVRP defined as implied variance minus the realized

variance, with both concepts directly observable at time t. The results are not materially

different although just a touch weaker (adjusted R2 is lower by two or three percentage

points compared to the IRVRP that uses the P-expectation of the realized variance).26

7 Conclusion

We study bond pricing implications in the context of the long-run risk asset-pricing model

with two types of volatilities and inflation non-neutrality. The model is promising in ex-

plaining first and second moments of the Treasury market returns.

The contribution of our paper to the fixed-income asset pricing literature is two-fold.

First, our reasonably calibrated version of the model with long-run risks matches well the

upward-sloping yield curve out to ten years, and the long-run risk appears to be the main

driving force behind this result. Second, the interest-rate variance risk premium constructed

from interest rate derivatives markets drives short-horizon (one- and three-month) Treasury

excess returns, while other popular predictive variables, such as Fama-Bliss forward spread

or Cochrane-Piazzessi forward-rate factor drive variation in longer-maturity Treasury excess

returns. In our model time-varying bond risk premium is driven by two volatility factors

(volatility of consumption and volatility-of-volatility of consumption) whereas variance risk

premium loads entirely on the vol-of-vol factor. Since variance risk premium explains a

significant part in variation in short-horizon Treasury excess returns, we interpret vol-of-vol

factor as a short-run risk factor. Since the forward-rate-related factors appear to explain

time-variation in long-horizon Treasury excess returns, we interpret these factors as related

to the long-run risk factor, the second factor that drives the variation in bond risk premium

in our model. Thus, our model and empirical findings provide useful insights on different

volatility risks. These insights should be useful for market participants and monetary policy

makers alike.

26Results discussed in this section are not reported but readily available upon request.
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A Appendix

A.1 Solution for the consumption-wealth ratio coefficients

Euler equation imposes equilibrium restrictions on the asset prices:

E[exp(mt+1 + rt+1)] = 1. (33)

This equation should hold for any asset, and for the wealth-consumption ration rc,t+1 as

well. The solutions of A coefficients in Eq. (6) are obtained using Euler equation (33),

return equation (7), and conjectured z dynamics (6). We solve for A0, Ax, Aσ2 , Aq - state

variables’ loadings in the price-consumption ratio zt. We solve for A’s by pricing rc,t+1 using

Euler equation (33), wealth return equation (7) and assumed z dynamics in equation (6).

Thus, Euler equation becomes:

Et [exp(mt+1 + rc,t+1)] = Et
[
exp

(
θ ln δ − θ

ψ
gt+1 + θrc,t+1

)]
= 1. (34)

Using Jensen’s inequality, obtain:

Et
[
θ ln δ − θ

ψ
gt+1 + θrc,t+1

]
+

1

2
Vart

[
θ ln δ − θ

ψ
gt+1 + θrc,t+1

]
= 0. (35)

Substituting out rc,t+1, zt+1, and zt, obtain:

Et[θ ln δ − θ

ψ
(µg + xt + σg,tzg,t+1) + θ(κ0 + κ1(A0 + Axxt+1 + Aσσ

2
g,t+1 + Aqqt+1)−

A0 − Axxt − Aσσ2
g,t − Aqqt + µg + xt + σg,tzg,t+1)]+

1

2
Vart[θ ln δ − θ

ψ
(µg + xt + σg,tzg,t+1) + θ(κ0 + κ1(A0 + Axxt+1 + Aσσ

2
g,t+1 + Aqqt+1)−

A0 − Axxt − Aσσ2
g,t − Aqqt + µg + xt + σg,tzg,t+1)] = 0.

(36)

33



To solve for Ax, match terms in front of xt:

− θ
ψ

+ θ(κ1Axρx − Ax + 1) = 0 ⇒ Ax =
1− 1

ψ

1− κ1ρx
. (37)

To solve for Aσ, match terms in front of σ2
g,t:

(θκ1Aσρσ − θAσ)σ2
g,t +

1

2
Vart

[
− θ
ψ
σ2
g,tzg,t+1 + θκ1Axφeσg,tzx,t+1 + θσg,tzg,t+1

]
=

θAσ(κ1ρσ − 1)σ2
g,t +

1

2
Vart

[(
θ − θ

ψ

)
σg,tzg,t+1 + θκ1Axφeσg,tzx,t+1

]
= 0 ⇒

θAσ(κ1ρσ − 1) +
1

2

[(
θ − θ

ψ

)2

+ (θκ1Axφe)
2

]
= 0 ⇒

Aσ =
1

2θ(1− κ1ρσ)

[(
θ − θ

ψ

)2

+ (θκ1Axφe)
2

]
.

(38)

To solve for A0, set constant terms under the expectation in (36) equal to zero:

θ ln δ + θ(κ0 + κ1(A0 + Aσaσ + Aqaq))− A0 +

(
θ − θ

ψ

)
µg = 0 ⇒

A0 =
1

1− κ1

[
ln δ + κ0 + κ1(Aσaσ + Aqaq) +

(
1− 1

ψ

)
µg

]
.

(39)

To solve for Aq, match terms in front of qt and set equal to zero:

(θκ1Aqρq − θAq)qt +
1

2
Vart[θκ1Aσ

√
qtzσt+1 + θκ1Aq(ρqqt + φq

√
qtzqt+1)− θAqqt] =

θAq(κ1ρq − 1)qt +
1

2
Var(θκ1Aσ

√
qtzσt+1 + θκ1Aqφq

√
qtzqt+1) = 0 =⇒

1

2
(θκ1φq)

2A2
q + θ(κ1ρq − 1)Aq +

1

2
(θκ1Aσ)2 = 0 or, equivalently,

(θκ1φq)
2A2

q + 2θ(κ1ρq − 1)Aq + (θκ1Aσ)2 = 0.

(40)

The solution for Aq represents the solution to a quadratic equation and is given by:

A±q =
1− κ1ρq ±

√
(1− κ1ρq)2 − (θκ2

1φqAσ)2

θ(κ1φq)2
. (41)
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As Tauchen (2011) notes, a “positive” root A+
q has an unfortunate property that

lim
φq→0

φ2
qA

+
q 6= 0, (42)

which is, essentially, a violation of the transversality condition in this setting: though un-

certainty qt vanishes with φq → 0, the effect of it on prices is not. Therefore, we choose A−q

root as a viable solution for Aq:

Aq =
1− κ1ρq −

√
(1− κ1ρq)2 − θ2κ4

1φ
2
qA

2
σ

θ(κ1φq)2
. (43)

To insure that determinant in (43) is positive, we also need to impose a constraint on the

magnitude of the shock zq,t+1:

φ2
q ≤

(1− κ1ρq)
2

θ2κ4
1A

2
σ

. (44)
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A.2 Solution for the pricing kernel

Using the solutions for A′s obtained in A.1, we solve for the expected value Et(mt+1) and

variance Vart(mt+1) of the pricing kernel:

Et[mt+1] = θ ln δ − θ

ψ
Et[gt+1] + (θ − 1)Et[rc,t+1] =

= θ ln δ − θ

ψ
(µg + xt) + (θ − 1)Et(κ0 + κ1zt+1 + gt − zt)

= θ ln δ − θ

ψ
(µg + xt) + (θ − 1)[κ0 + κ1(A0 + Axρxxt + Aσ(aσ + ρσσ

2
g,t) + Aq(aq + ρqqt))

+ µg + xt − A0 − Axxt − Aσσ2
g,t − Aqqt]

= θ ln δ +

(
(θ − 1)− θ

ψ

)
︸ ︷︷ ︸

−γ

µg + (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]

− θ

ψ
xt + (θ − 1)[(Ax(κ1ρx − 1) + 1)xt + Aσ(κ1ρσ − 1)σ2

g,t + Aq(κ1ρq − 1)qt]

= θ ln δ − γ(µg + xt) + (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]

+ (θ − 1)[Ax(κ1ρx − 1)xt + Aσ(κ1ρσ − 1)σ2
g,t + Aq(κ1ρq − 1)qt].

(45)

The variance of the SDF Vart[mt+1] is given by

Vart[mt+1] = Vart

[
θ ln δ − θ

ψ
gt+1 + (θ − 1)rc,t+1

]
= Vart

[
− θ
ψ
gt+1 + (θ − 1)κ1(A0 + Axxt+1 + Aσσ

2
t+1 + Aqqt+1)

]
= Vart

[
− θ
ψ
σg,tzg,t+1 + (θ − 1)[κ1(Axφeσg,tzx,t+1 + Aσ

√
qtzσ,t+1 + Aqφq

√
qtzq,t+1) + σg,tzg,t+1]

]
= Vart

[(
(θ − 1)− θ

ψ

)
σg,tzg,t+1 + (θ − 1)κ1(Axφeσg,tzx,t+1 + Aσ

√
qtzσ,t+1 + Aqφq

√
qtzq,t+1)

]
= γ2σ2

g,t + (θ − 1)2κ2
1

[
A2
xφ

2
eσ

2
g,t + (A2

σ + A2
qφ

2
q)qt
]
.

(46)
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A.3 Solution for the n−period real bond price

In this section we derive the (log) price of an n−period bond in closed form. A general

recursion for solving for the n−period bond prices is as follows:

P n
t = Et

[
Mt+1P

n−1
t+1

]
. (47)

Then the n−period log bond price

pnt = Et[mt+1] +
1

2
Vart[mt+1] + Et[pn−1

t+1 ] +
1

2
Vart[p

n−1
t+1 ] + Covt[mt+1, p

n−1
t+1 ]. (48)

The first two terms in (48) are given in (45) and (46). The last three terms in (48) are

computed using a conjectured affine representation of the state variables:

pn−1
t+1 = Bn−1

0 +Bn−1
1 xt+1 +Bn−1

2 σ2
t+1 +Bn−1

3 qt+1. (49)

The expectation term for the bond price Et
[
pn−1
t+1

]
is given by:

Et
[
pn−1
t+1

]
=Bn−1

0 +Bn−1
1 Et[xt+1] +Bn−1

2 Et[σ2
t+1] +Bn−1

3 Et[qt+1]

= Bn−1
0 +Bn−1

1 ρxxt +Bn−1
2 (aσ + ρσσ

2
t ) +Bn−1

3 (aq + ρqqt)

= (Bn−1
0 +Bn−1

2 aσ +Bn−1
3 aq) +Bn−1

1 ρxxt +B2
n−1ρσσ

2
t +Bn−1

3 ρqqt,

(50)

and the variance term Vart[p
n−1
t+1 ] is:

Vart
[
pn−1
t+1

]
= Et

[
pn−1
t+1 − Et

[
pn−1
t+1

]]2
=
(
Bn−1

1 φe
)2
σ2
g,t +

((
Bn−1

2

)2
+
(
Bn−1

3 φq
)2
)
qt. (51)
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Lastly, express the covariance term as a function of the state variables:

Covt
[
mt+1, p

n−1
t+1

]
= Et

[(
pn−1
t+1 − Et

[
pn−1
t+1

])
× (mt+1 − Et [mt+1])

]
= Et

[(
Bn−1

1 φeσg,tzx,t+1 +Bn−1
2

√
qtzσ,t+1 +Bn−1

3 φq
√
qtzq,t+1

)
× ((1− γ)σg,tzg,t+1 + (θ − 1)κ1(Axφeσg,tzx,t+1 + Aσ

√
qtzσ,t+1 + Aqφq

√
qtzq,t+1))]

= (θ − 1)κ1

[
AxB

n−1
1 φ2

eσ
2
g,t + AσB

n−1
2 qt + AqB

n−1
3 φ2

qqt
]
.

(52)

Write down pnt as a sum of (45), (46), (50), (51), and (52) and collect together constant

terms and loadings for state variables xt, σ
2
t , and qt. This implies for coefficients:

Bn
0 = c0 +Bn−1

0 +Bn−1
2 aσ +Bn−1

3 aq

Bn
1 = c1 +Bn−1

1 ρx

Bn
2 = c2 +Bn−1

2 ρσ −
1

2
(θ − 1)2κ2

1A
2
xφ

2
e +

1

2
φ2
e

[
(θ − 1)κ1Ax +Bn−1

1

]2
Bn

3 = c3 +Bn−1
3 ρq +

1

2

[(
Bn−1

2

)2
+
(
Bn−1

3 φq
)2
]

+ (θ − 1)κ1

(
AσB

n−1
2 + AqB

n−1
3 φ2

q

)
,

(53)

where ci, i = 0, . . . , 3 are given by:

c0 = θ ln δ − γµg + (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)];

c1 = −γ + (θ − 1)Ax(κ1ρx − 1);

c2 =
1

2
γ2 +

1

2
(θ − 1)2κ2

1A
2
xφ

2
e + (θ − 1)Aσ(κ1ρσ − 1);

c3 =
1

2
(θ − 1)2κ2

1(A2
σ + A2

qφ
2
q) + (θ − 1)Aq(κ1ρq − 1).

(54)

Note that ci, i = 0, . . . , 3, coefficients are the steady-state loadings for the real risk-free rate:

rf = −[c0 c1 c2 c3]× [1 Ex Eσ2 Eq]′, (55)
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A.4 Solution for the nominal risk-free rate

Here we provide a derivation for the nominal risk-free rate, the (negative) of the (log) price

of the one period nominal bond. We express the nominal risk-free rate in log terms, similar

to the real risk free rate given in equation (12):

r$
f,t = −Et

[
m$
t+1

]
− 1

2
Vart

[
m$
t+1

]
= −Et [mt+1 − πt+1]− 1

2
Vart [mt+1]− 1

2
Vart [πt+1] + Covt[mt+1, πt+1]

= rf,t + Et[πt+1]− 1

2
Vart[πt+1] + Covt[mt+1, πt+1]

= rf,t + aπ + ρππt −
1

2
[φ2
π + φ2

πgσ
2
g,t + φ2

πσqt] + Covt[mt+1, πt+1].

(56)

we need to compute the last term in (56) to complete the expression for the nominal risk-free

rate in closed form:

Covt[mt+1, πt+1] = Et[[mt+1 − Et[mt+1]]× [πt+1 − Et[πt+1]]]. (57)

The deviations of pricing kernel mt+1 and inflation πt+1 are given by:

mt+1 − Et[mt+1] = −γσg,tzg,t+1 + (θ − 1)κ1(Axφezx,t+1 + Aσ
√
qtzσ,t+1 + Aqφq

√
qtzq,t+1)

πt+1 − Et[πt+1] = φπzπ,t+1 + φπgσg,tzg,t+1 + φπσ
√
qtzσ,t+1,

(58)

which implies for (57):

Et[[mt+1 − Et[mt+1]]× [πt+1 − Et[πt+1]]] = −γφπgσ2
g,t + (θ − 1)κ1Aσφπσqt. (59)

Combining together (13), (56), and (59), obtain the closed-form expression for the nominal
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risk-free rate:

r$
f,t = −θ ln δ + γµg + aπ − (θ − 1)[κ0 + (κ1 − 1)A0 + κ1(Aσaσ + Aqaq)]−

1

2
φ2
π

+ [γ − (θ − 1)Ax(κ1ρx − 1)]xt

+

[
−(θ − 1)Aσ(κ1ρσ − 1)− 1

2
γ2 − 1

2
(θ − 1)2(κ1Axφe)

2 − 1

2
φ2
πg − γφπg

]
σ2
g,t

+

[
−(θ − 1)Aq(κ1ρq − 1)− 1

2
(θ − 1)2κ2

1(A2
σ + A2

qφ
2
q)−

1

2
φ2
πσ + (θ − 1)κ1Aσφπσ

]
qt

+ ρππt.

(60)

Similarly to the real risk-free rate, the steady-state nominal risk-free rate can be written as

follows:

r$
f = −[c$

0 c
$
1 c

$
2 c

$
3 c

$
4]× [1 Ex Eσ2 Eπ]′, (61)

where the c$
i , i = 0, . . . , 4 loadings:

c$
0 = c0 − aπ +

1

2
φ2
π;

c$
1 = c1;

c$
2 = c2 +

1

2
φ2
πg + γφπg;

c$
3 = c3 +

1

2
φ2
πσ − (θ − 1)κ1Aσφπσ;

c$
4 = ρπ.

(62)

A.5 Solution for the n−period nominal bond price

The n−period nominal log bond price p$,n
t is given by:

p$,n
t = Et[m$

t+1] +
1

2
Vart[m

$
t+1] + Et[p$,n−1

t+1 ] +
1

2
Vart[p

$,n−1
t+1 ] + Covt[m

$
t+1, p

$,n−1
t+1 ]. (63)

Assume that p$,n
t is affine as in the case of real bonds, with the additional state variable for
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inflation:

p$,n
t = B$,n

0 +B$,n
1 xt +B$,n

2 σ2
t +B$,n

3 qt +B$,n
4 πt. (64)

We know the first and the second terms in (63) from nominal risk-free rate calculations.

Compute the last three terms using a pricing conjecture (64):

Et
[
p$,n−1
t+1

]
= B$,n−1

0 +B$,n−1
1 ρxxt +B$,n−1

2 (aσ + ρσσ
2
g,t) +B$,n−1

3 (aq + ρqqt) +B$,n−1
4 (aπ + ρππt)

=
[
B$,n−1

0 +B$,n−1
2 aσ +B$,n−1

3 aq +B$,n−1
4 aπ

]
+B$,n−1

1 ρxxt +B$,n−1
2 ρσσ

2
g,t +B$,n−1

3 ρqqt +B$,n−1
4 ρππt.

(65)

The shock to the nominal bond price is given by:

p$,n−1
t+1 − Et

[
p$,n−1
t+1

]
= B$,n−1

1 φeσg,tzx,t+1 +B$,n−1
2

√
qtzσ,t+1 +B$,n−1

3 φq
√
qtzq,t+1

+B$,n−1
4 [φπzπ,t+1 + φπgσg,tzg,t+1 + φπσ

√
qtzσ,t+1].

(66)

Thus, the variance of the nominal bond price - the fourth term in (63) - is given by:

Var[p$,n−1
t+1 ] = Et

[
p$,n−1
t+1 − Et

[
p$,n−1
t+1

]]2

=
[
(B$,n−1

1 φe)
2 + (B$,n−1

4 φπg)
2
]
σ2
g,t

+

[(
B$,n−1

2 +B$,n−1
4 φπσ

)2

+
(
B$,n−1

3 φq

)2
]
qt +

(
B$,n−1

4 φπ

)2

.
(67)

Lastly, compute covariance between between nominal pricing kernel m$
t+1 and the nominal

bond price p$,n−1
t+1 :

Covt

[
m$
t+1, p

$,n−1
t+1

]
= Et

[[
m$
t+1 − Et

[
m$
t+1

]]
×
[
p$,n−1
t+1 − Et

[
p$,n−1
t+1

]]]
, (68)
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where the shock to the nominal pricing kernel in terms of state variables is:

m$
t+1 − Et

[
m$
t+1

]
= mt+1 − Etmt+1 − (πt+1 − Etπt+1)

= −γσg,tzg,t+1 + (θ − 1)κ1 (Axφeσg,tzx,t+1 + Aσ
√
qtzσ,t+1 + Aqφq

√
qtzq,t+1)

− φπzπ,t+1 − φπgσg,tzg,t+1 − φπσ
√
qtzσ,t+1,

(69)

and the shock to the nominal bond price, p$,n−1
t+1 −Et

[
p$,n−1
t+1

]
, is given in (66). Thus, a final

expression for a covariance term in (63) is:

Covt

[
m$
t+1, p

$,n−1
t+1

]
=
[
(θ − 1)κ1AxB

$,n−1
1 φ2

e − (γ + φπg)B
$,n−1
4 φπg

]
σg,t

+
[
((θ − 1)κ1Aσ − φπσ)(B$,n−1

2 +B$,n−1
4 φπσ) + (θ − 1)κ1AqB

$,n−1
3 φ2

qqt

]
qt

−B$,n−1
4 φ2

π.

(70)

Combining together (56), (65), (67), and (70), obtain the solution for the nominal n−period

bond price:

B$,n
0 = c0 − aπ +

[
B$,n−1

0 +B$,n−1
2 aσ +B$,n−1

3 aq +B$,n−1
4 aπ

]
+

1

2
φ2
π

(
B$,n−1

4 − 1
)2

B$,n
1 = c1 +B$,n−1

1 ρx

B$,n
2 = B$,n−1

2 ρσ + (θ − 1)Aσ(κ1ρσ − 1) +
1

2
(γ + φπg)

2 +
1

2
φ2
e

[
(θ − 1)κ1Ax +B$,n−1

1

]2

+
1

2
(B$,n−1

4 φπg)
2 − (γ + φπg)B

$,n−1
4 φπg

B$,n
3 = B$,n−1

3 ρq + (θ − 1)Aq(κ1ρq − 1) +
1

2

[
(θ − 1)κ1Aσ +B$,n−1

2 + φφσ
(
B$,n−1 − 1

)]2

+
1

2

[
(θ − 1)κ1Aq +B$,n−1

3

]2

φ2
q

B$,n
4 = φπ

(
B$,n−1 − 1

)
.

(71)
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Table 1: Model Calibration

This table reports the calibrated parameters used in previous studies and in our paper.
Column “BY” refers to the choice of parameters in Bansal and Yaron (2004), column “BTZ”
– to that in Bollerslev, Tauchen, and Zhou (2009), and column “GSZ” refers to our choice
of parameters.

Type Parameters BY BTZ GSZ

Panel A: Real economy dynamics
δ 0.997 0.997 0.997

Preferences γ 10 10 8
ψ 1.5 1.5 1.5

µg 0.0015 0.0015 0.0015
ρx 0.979 0 0.979

Endowment φe 0.001 0 0.001
aσ 1.20463e-05 1.20463e-05 1.20463e-05
ρσ 0.978 0.978 0.978

aq 2e-07 2e-10
Uncertainty ρq 0.8 0.8

φq 0.001 0.0001

Panel B: Inflation dynamics
Constant aπ 8.33333e-05
Persistence ρπ 0.95
Autonomous φπ 0.0013
Consumption φπg -0.0385
Uncertainty φπσ 28.5044

Panel C: Campbell-Shiller constants
κ0 0.3251 0.3251 0.3251
κ1 0.9 0.9 0.9
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Table 2: Summary Statistics

This table presents summary statistics for the data used in the study. Panel A presents a summary
statistics for the annualized 1-month and 1-year Treasury excess returns for maturities 2 to 5 years;
Panel B reports the summary statistics for the forward-rate based predictors and the 3-month
interest rate swaption expiry based variance risk premium. In Panel B FSj , j = 1, . . . , 4 refers to
Fama-Bliss j-year forward spreads, CP – to Cochrane-Piazzesi factor. IV is the implied variance
derived from interest swaption market, RV is the expected value of the realized variance derived
from the intraday quotes of the interest rate swap market. IRVRP is the interest-rate variance risk
premium. Sample period is April 2002 to January 2013, at monthly frequency. Treasury excess
returns, forward spreads, and Cochrane-Piazzesi factor are computed using Fama-Bliss Treasury
Bond data set from CRSP. Interest rate swaptions data is from J.P. Morgan and Barclays Capital,
and intraday interest rate swap quotes data is from Barclays Capital.

Panel A: Summary statistics of Treasury excess returns

1-month excess returns 1-year excess returns
2yr 3yr 4yr 5yr 2yr 3yr 4yr 5yr

Mean -1.37 -1.30 -1.24 -1.17 0.61 1.46 2.35 3.16
Max 0.93 1.69 3.61 4.84 3.03 6.37 9.34 11.79
Min -5.18 -5.50 -5.79 -6.03 -1.54 -2.55 -3.62 -4.63
Std. Dev. 1.71 1.84 2.04 2.24 1.10 2.09 2.96 3.68
Skewness -0.78 -0.64 -0.39 -0.23 0.18 0.10 0.02 -0.05
Kurtosis 2.19 2.12 2.19 2.32 2.40 2.51 2.35 2.28
AR(1) coeff 0.93 0.84 0.72 0.63 0.91 0.89 0.88 0.87

Panel B: Summary statistics for IRVRP and forward-rate based predictors

FS2 FS3 FS4 FS5 CP IV RV IRV RP
Mean 0.37 0.91 1.47 1.95 1.89 3.16 1.16 2.01
Max 1.44 2.50 3.44 4.32 4.17 9.70 3.43 6.27
Min -0.70 -0.61 -0.54 -0.43 -0.76 0.66 0.52 -0.00
Std. Dev. 0.53 0.88 1.18 1.49 0.98 1.83 0.54 1.59
Skewness 0.07 0.07 -0.03 -0.15 -0.39 0.78 1.80 0.72
Kurtosis 2.19 1.81 1.75 1.69 2.88 3.48 6.93 2.47
AR(1) coeff 0.92 0.95 0.95 0.97 0.72 0.92 0.75 0.87
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Table 3: 1m HPR Bond Predictability with 10y1m Interest-rate VRP

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)IRV RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury notes, h = 1 month and τ = 2, . . . , 5

years. IRV RPt is the interest-rate variance risk premium derived from interest rate derivatives markets,
Ft,j , j = 1, 2 is the forward spread (FS) and Cochrane-Piazzesi (CP) factors. t-statistics in parentheses are
calculated using Newey and West (1987) standard errors. Adjusted R2 are given in percentage points. Trea-
sury excess returns are computed using Fama-Bliss data set, obtained from CRSP. Interest rate swaptions
and swaps data are from J.P. Morgan and Barclays Capital. Sample is from April 2002 to January 2013,
monthly frequency.

(1) (2) (3) (4) (5) (6) (7)

Panel A: maturity = 2 years

Const -0.026 -0.021 -0.027 -0.031 -0.032 -0.032
(-6.56) (-6.46) (-3.27) (-12.72) (-4.82) (-9.76)

IRVRP 0.004 0.003 0.003 0.003
(4.65) (5.85) (4.40) (5.56)

FS 1.983 1.732 1.688
(4.98) (7.87) (7.01)

CP 0.689 0.361 0.090
(2.16) (1.43) (0.62)

Adj. R2 42.62 37.35 14.16 71.00 45.88 70.95

Panel B: maturity = 3 years

Const -0.025 -0.026 -0.027 -0.034 -0.032 -0.035
(-6.06) (-7.11) (-3.25) (-13.14) (-4.68) (-10.31)

IRVRP 0.004 0.003 0.003 0.003
(4.49) (4.53) (4.16) (4.39)

FS 1.407 1.194 1.167
(5.89) (8.22) (7.82)

CP 0.730 0.412 0.082
(2.26) (1.58) (0.59)

Adj. R2 36.07 44.63 13.82 67.11 39.76 66.97

Panel C: maturity = 4 years

Const -0.024 -0.029 -0.027 -0.037 -0.032 -0.039
(-5.39) (-8.10) (-3.21) (-16.80) (-4.41) (-13.83)

IRVRP 0.004 0.003 0.003 0.003
(3.96) (5.67) (3.58) (4.99)

FS 1.159 1.018 0.989
(7.36) (9.25) (8.63)

CP 0.765 0.460 0.151
(2.33) (1.68) (1.06)

Adj. R2 27.74 44.58 12.25 61.16 31.43 61.26

Panel D: maturity = 5 years

Const -0.024 -0.033 -0.028 -0.036 -0.032 -0.038

(-5.30) (-10.44) (-3.15) (-14.57) (-4.38) (-11.16)

IRVRP 0.004 0.002 0.003 0.002
(4.40) (2.80) (3.97) (2.58)

FS 1.066 0.905 0.876
(9.03) (7.94) (7.38)

CP 0.826 0.510 0.167
(2.40) (1.74) (1.01)

Adj. R2 24.92 49.30 11.73 55.03 28.63 55.07
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Table 4: 3m HPR Bond Predictability with 10y1m Interest-rate VRP

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)IRV RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury notes, h = 3 months and τ = 2, . . . , 5

years. IRV RPt is the interest-rate variance risk premium derived from interest-rate derivatives markets,
Ft,j , j = 1, 2 is the forward spread (FS) and Cochrane-Piazzesi (CP) factors. t-statistics in parentheses are
calculated using Newey and West (1987) standard errors. Adjusted R2 are given in percentage points. Trea-
sury excess returns are computed using Fama-Bliss data set, obtained from CRSP. Interest rate swaptions
and swaps data are from J.P. Morgan and Barclays Capital. Sample is from April 2002 to January 2013,
monthly frequency.

(1) (2) (3) (4) (5) (6) (7)

Panel A: maturity = 2 years

Const -0.020 -0.017 -0.022 -0.025 -0.026 -0.026
(-5.43) (-5.12) (-2.88) (-7.70) (-3.99) (-7.06)

IRVRP 0.003 0.003 0.003 0.003
(4.31) (5.21) (4.05) (4.79)

FS 1.608 1.396 1.346
(4.08) (4.91) (4.41)

CP 0.618 0.328 0.112
(2.02) (1.31) (0.69)

Adj. R2 32.40 28.06 12.37 53.39 35.14 53.33

Panel B: maturity = 3 years

Const -0.018 -0.020 -0.021 -0.026 -0.024 -0.027
(-3.93) (-5.10) (-2.45) (-6.44) (-3.23) (-6.44)

IRVRP 0.003 0.002 0.003 0.002
(3.75) (3.60) (3.37) (3.33)

FS 1.288 1.124 1.103
(4.78) (4.95) (4.71)

CP 0.646 0.375 0.069
(1.90) (1.25) (0.38)

Adj. R2 19.18 32.12 8.61 42.61 21.31 42.17

Panel C: maturity = 4 years

Const -0.015 -0.024 -0.019 -0.028 -0.022 -0.030
(-2.62) (-5.33) (-2.04) (-6.02) (-2.49) (-6.15)

IRVRP 0.003 0.002 0.002 0.002
(2.58) (2.84) (2.19) (2.43)

FS 1.157 1.066 1.046
(5.40) (5.26) (5.08)

CP 0.658 0.426 0.110
(1.72) (1.20) (0.49)

Adj. R2 9.41 30.20 5.46 34.15 10.98 33.70

Panel D: maturity = 5 years

Const -0.014 -0.026 -0.018 -0.027 -0.021 -0.028

(-2.23) (-4.87) (-1.69) (-4.97) (-2.12) (-4.67)

IRVRP 0.003 0.001 0.002 0.001
(2.83) (1.00) (2.44) (0.91)

FS 1.068 0.993 0.980
(5.31) (4.51) (4.34)

CP 0.710 0.452 0.083
(1.59) (1.07) (0.30)

Adj. R2 8.10 29.17 4.41 29.28 9.20 28.69
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Table 5: 12m HPR Bond Predictability with 10y1m Interest-rate VRP

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)IRV RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury notes, h = 12 months and τ = 2, . . . , 5

years. IRV RPt is the interest-rate variance risk premium derived from interest rate derivatives markets,
Ft,j , j = 1, 2 is the forward spread (FS) and Cochrane-Piazzesi (CP) factors. t-statistics in parentheses are
calculated using Newey and West (1987) standard errors. Adjusted R2 are given in percentage points. Trea-
sury excess returns are computed using Fama-Bliss data set, obtained from CRSP. Interest rate swaptions
and swaps data are from J.P. Morgan and Barclays Capital. Sample is from April 2002 to January 2013,
monthly frequency.

(1) (2) (3) (4) (5) (6) (7)

Panel A: maturity = 2 years

Const 0.004 0.007 0.007 0.006 0.007 0.007
(1.28) (2.96) (2.15) (1.80) (1.94) (1.86)

IRVRP 0.000 0.001 0.001 0.001
(0.72) (1.20) (1.04) (1.25)

FS -0.534 -0.592 -0.558
(-1.62) (-1.87) (-1.74)

CP -0.107 -0.169 -0.081
(-0.81) (-1.22) (-0.54)

Adj. R2 -0.07 6.59 -0.09 7.98 0.89 7.48

Panel B: maturity = 3 years

Const 0.011 0.015 0.017 0.013 0.016 0.017
(1.88) (2.49) (2.66) (1.89) (2.46) (2.29)

IRVRP 0.001 0.001 0.001 0.001
(0.67) (1.07) (1.00) (1.22)

FS -0.242 -0.331 -0.262
(-0.60) (-0.85) (-0.68)

CP -0.208 -0.320 -0.252
(-0.83) (-1.21) (-0.93)

Adj. R2 -0.20 0.21 -0.02 0.84 0.80 1.00

Panel C: maturity = 4 years

Const 0.020 0.018 0.026 0.017 0.026 0.024
(2.40) (1.86) (2.84) (1.56) (2.65) (2.05)

IRVRP 0.001 0.000 0.001 0.001
(0.43) (0.30) (0.71) (0.63)

FS 0.230 0.205 0.277
(0.52) (0.48) (0.67)

CP -0.253 -0.374 -0.451
(-0.67) (-0.96) (-1.26)

Adj. R2 -0.58 -0.02 -0.28 -0.87 -0.24 -0.00

Panel D: maturity = 5 years

Const 0.025 0.021 0.032 0.021 0.030 0.027

(2.59) (1.77) (2.66) (1.65) (2.48) (2.03)

IRVRP 0.002 0.001 0.002 0.001
(0.81) (0.32) (0.99) (0.52)

FS 0.411 0.358 0.422
(0.98) (0.79) (0.96)

CP -0.090 -0.300 -0.442
(-0.18) (-0.60) (-1.00)

Adj. R2 0.50 2.14 -0.92 1.34 0.07 1.49
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Table 6: 1m HPR Bond Predictability with 10y3m Interest-rate VRP

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)IRV RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury notes, h = 1 month and τ = 2, . . . , 5

years. IRV RPt is the interest-rate variance risk premium derived from interest rate derivatives markets,
Ft,j , j = 1, 2 is the forward spread (FS) and Cochrane-Piazzesi (CP) factors. t-statistics in parentheses are
calculated using Newey and West (1987) standard errors. Adjusted R2 are given in percentage points. Trea-
sury excess returns are computed using Fama-Bliss data set, obtained from CRSP. Interest rate swaptions
and swaps data are from J.P. Morgan and Barclays Capital. Sample is from April 2002 to January 2013,
monthly frequency.

(1) (2) (3) (4) (5) (6) (7)

Panel A: maturity = 2 years

Const -0.029 -0.021 -0.027 -0.034 -0.035 -0.036
(-7.57) (-6.46) (-3.27) (-16.23) (-5.91) (-13.65)

IRVRP 0.008 0.007 0.007 0.007
(6.44) (11.38) (6.48) (10.52)

FS 1.983 1.699 1.639
(4.98) (9.03) (7.86)

CP 0.689 0.382 0.121
(2.16) (1.64) (1.03)

Adj. R2 50.21 37.35 14.16 77.53 54.10 77.73

Panel B: maturity = 3 years

Const -0.028 -0.026 -0.027 -0.037 -0.035 -0.038
(-7.00) (-7.11) (-3.25) (-17.17) (-5.69) (-14.43)

IRVRP 0.008 0.006 0.007 0.006
(6.12) (8.74) (6.10) (8.32)

FS 1.407 1.185 1.153
(5.89) (10.23) (9.60)

CP 0.730 0.429 0.097
(2.26) (1.77) (0.88)

Adj. R2 42.75 44.63 13.82 73.63 47.02 73.62

Panel C: maturity = 4 years

Const -0.027 -0.029 -0.027 -0.039 -0.035 -0.041
(-6.32) (-8.10) (-3.21) (-18.97) (-5.33) (-17.94)

IRVRP 0.008 0.006 0.007 0.006
(5.55) (9.66) (5.42) (8.11)

FS 1.159 0.984 0.948
(7.36) (10.79) (9.94)

CP 0.765 0.471 0.181
(2.33) (1.83) (1.50)

Adj. R2 33.67 44.58 12.25 64.52 37.76 64.86

Panel D: maturity = 5 years

Const -0.027 -0.033 -0.028 -0.038 -0.036 -0.040

(-6.12) (-10.44) (-3.15) (-16.50) (-5.25) (-13.28)

IRVRP 0.008 0.005 0.007 0.004
(5.80) (4.70) (5.71) (4.37)

FS 1.066 0.877 0.843
(9.03) (8.81) (8.01)

CP 0.826 0.526 0.176
(2.40) (1.90) (1.15)

Adj. R2 29.44 49.30 11.73 57.95 33.61 58.07
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Table 7: 3m HPR Bond Predictability with 10y3m Interest-rate VRP

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)IRV RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury notes, h = 3 months and τ = 2, . . . , 5

years. IRV RPt is the interest-rate variance risk premium derived from interest rate derivatives markets,
Ft,j , j = 1, 2 is the forward spread (FS) and Cochrane-Piazzesi (CP) factors. t-statistics in parentheses are
calculated using Newey and West (1987) standard errors. Adjusted R2 are given in percentage points. Trea-
sury excess returns are computed using Fama-Bliss data set, obtained from CRSP. Interest rate swaptions
and swaps data are from J.P. Morgan and Barclays Capital. Sample is from April 2002 to January 2013,
monthly frequency.

(1) (2) (3) (4) (5) (6) (7)

Panel A: maturity = 2 years

Const -0.023 -0.017 -0.022 -0.027 -0.028 -0.028
(-6.15) (-5.12) (-2.88) (-8.43) (-4.74) (-8.41)

IRVRP 0.006 0.006 0.006 0.005
(5.68) (8.19) (5.62) (7.35)

FS 1.608 1.361 1.305
(4.08) (5.06) (4.51)

CP 0.618 0.328 0.123
(2.02) (1.39) (0.83)

Adj. R2 38.11 28.06 12.37 58.00 40.99 58.07

Panel B: maturity = 3 years

Const -0.021 -0.020 -0.021 -0.028 -0.026 -0.029
(-4.42) (-5.10) (-2.45) (-6.80) (-3.75) (-7.19)

IRVRP 0.006 0.005 0.005 0.005
(4.66) (5.42) (4.41) (4.89)

FS 1.288 1.109 1.089
(4.78) (5.20) (4.90)

CP 0.646 0.371 0.064
(1.90) (1.30) (0.38)

Adj. R2 23.00 32.12 8.61 45.95 25.18 45.53

Panel C: maturity = 4 years

Const -0.018 -0.024 -0.019 -0.030 -0.024 -0.031
(-3.09) (-5.33) (-2.04) (-6.08) (-2.87) (-6.38)

IRVRP 0.006 0.004 0.005 0.004
(3.44) (3.61) (3.14) (3.13)

FS 1.157 1.034 1.015
(5.40) (5.30) (5.09)

CP 0.658 0.404 0.110
(1.72) (1.18) (0.51)

Adj. R2 12.70 30.20 5.46 35.61 14.11 35.17

Panel D: maturity = 5 years

Const -0.017 -0.026 -0.018 -0.029 -0.024 -0.030

(-2.63) (-4.87) (-1.69) (-5.03) (-2.44) (-4.76)

IRVRP 0.006 0.003 0.005 0.002
(3.45) (1.63) (3.18) (1.56)

FS 1.068 0.959 0.948
(5.31) (4.57) (4.36)

CP 0.710 0.437 0.066
(1.59) (1.07) (0.24)

Adj. R2 10.43 29.17 4.41 30.17 11.46 29.57
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Table 8: 12m HPR Bond Predictability with 10y3m Interest-rate VRP

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)IRV RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury notes, h = 12 months and τ = 2, . . . , 5

years. IRV RPt is the interest-rate variance risk premium derived from interest rate derivatives markets,
Ft,j , j = 1, 2 is the forward spread (FS) and Cochrane-Piazzesi (CP) factors. t-statistics in parentheses are
calculated using Newey and West (1987) standard errors. Adjusted R2 are given in percentage points. Trea-
sury excess returns are computed using Fama-Bliss data set, obtained from CRSP. Interest rate swaptions
and swaps data are from J.P. Morgan and Barclays Capital. Sample is from April 2002 to January 2013,
monthly frequency.

(1) (2) (3) (4) (5) (6) (7)

Panel A: maturity = 2 years

Const 0.004 0.007 0.007 0.006 0.006 0.007
(1.13) (2.96) (2.15) (1.59) (1.73) (1.69)

IRVRP 0.001 0.001 0.001 0.001
(0.58) (1.13) (0.85) (1.16)

FS -0.534 -0.602 -0.572
(-1.62) (-1.92) (-1.81)

CP -0.107 -0.158 -0.072
(-0.81) (-1.16) (-0.49)

Adj. R2 -0.27 6.59 -0.09 7.96 0.48 7.38

Panel B: maturity = 3 years

Const 0.011 0.015 0.017 0.013 0.016 0.016
(1.64) (2.49) (2.66) (1.71) (2.21) (2.11)

IRVRP 0.001 0.002 0.002 0.002
(0.62) (1.03) (0.90) (1.15)

FS -0.242 -0.342 -0.275
(-0.60) (-0.89) (-0.73)

CP -0.208 -0.310 -0.239
(-0.83) (-1.20) (-0.91)

Adj. R2 -0.19 0.21 -0.02 0.95 0.72 1.03

Panel C: maturity = 4 years

Const 0.018 0.018 0.026 0.016 0.024 0.023
(2.03) (1.86) (2.84) (1.44) (2.38) (1.94)

IRVRP 0.002 0.001 0.003 0.002
(0.63) (0.52) (0.91) (0.82)

FS 0.230 0.174 0.244
(0.52) (0.41) (0.60)

CP -0.253 -0.399 -0.460
(-0.67) (-1.07) (-1.33)

Adj. R2 -0.08 -0.02 -0.28 -0.58 0.48 0.41

Panel D: maturity = 5 years

Const 0.023 0.021 0.032 0.020 0.028 0.026

(2.15) (1.77) (2.66) (1.51) (2.22) (1.91)

IRVRP 0.004 0.002 0.005 0.003
(1.11) (0.72) (1.34) (0.93)

FS 0.411 0.289 0.359
(0.98) (0.66) (0.83)

CP -0.090 -0.348 -0.465
(-0.18) (-0.73) (-1.08)

Adj. R2 1.76 2.14 -0.92 1.92 1.54 2.22
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Table 9: 1m HPR Bond Predictability with 10y12m Interest-rate VRP

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)IRV RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury notes, h = 1 month and τ = 2, . . . , 5

years. IRV RPt is the interest-rate variance risk premium derived from interest rate derivatives markets,
Ft,j , j = 1, 2 is the forward spread (FS) and Cochrane-Piazzesi (CP) factors. t-statistics in parentheses are
calculated using Newey and West (1987) standard errors. Adjusted R2 are given in percentage points. Trea-
sury excess returns are computed using Fama-Bliss data set, obtained from CRSP. Interest rate swaptions
and swaps data are from J.P. Morgan and Barclays Capital. Sample is from April 2002 to January 2013,
monthly frequency.

(1) (2) (3) (4) (5) (6) (7)

Panel A: maturity = 2 years

Const -0.021 -0.021 -0.027 -0.029 -0.034 -0.036
(-5.20) (-6.46) (-3.27) (-9.77) (-4.84) (-11.72)

IRVRP 0.012 0.013 0.012 0.013
(4.23) (7.82) (4.65) (7.92)

FS 1.983 2.094 1.885
(4.98) (8.05) (7.30)

CP 0.689 0.697 0.381
(2.16) (2.61) (2.67)

Adj. R2 23.40 37.35 14.16 65.55 38.27 69.50

Panel B: maturity = 3 years

Const -0.020 -0.026 -0.027 -0.035 -0.034 -0.040
(-4.88) (-7.11) (-3.25) (-14.64) (-4.77) (-17.13)

IRVRP 0.012 0.014 0.012 0.014
(4.07) (10.43) (4.52) (10.56)

FS 1.407 1.510 1.396
(5.89) (11.05) (12.22)

CP 0.730 0.739 0.301
(2.26) (2.70) (3.54)

Adj. R2 19.72 44.63 13.82 71.44 34.19 73.43

Panel C: maturity = 4 years

Const -0.019 -0.029 -0.027 -0.036 -0.034 -0.042
(-4.51) (-8.10) (-3.21) (-12.86) (-4.66) (-17.78)

IRVRP 0.012 0.012 0.012 0.012
(3.83) (7.34) (4.28) (7.67)

FS 1.159 1.152 1.059
(7.36) (11.79) (12.65)

CP 0.765 0.773 0.396
(2.33) (2.75) (3.18)

Adj. R2 15.95 44.58 12.25 60.55 28.75 63.48

Panel D: maturity = 5 years

Const -0.019 -0.033 -0.028 -0.038 -0.035 -0.043

(-4.19) (-10.44) (-3.15) (-16.64) (-4.54) (-16.50)

IRVRP 0.012 0.011 0.012 0.011
(3.61) (6.30) (4.08) (6.72)

FS 1.066 1.032 0.961
(9.03) (10.96) (10.61)

CP 0.826 0.835 0.312
(2.40) (2.78) (2.44)

Adj. R2 13.12 49.30 11.73 59.62 25.33 60.86
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Table 10: 3m HPR Bond Predictability with 10y12m Interest-rate VRP

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)IRV RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury notes, h = 3 months and τ = 2, . . . , 5

years. IRV RPt is the interest-rate variance risk premium derived from interest rate derivatives markets,
Ft,j , j = 1, 2 is the forward spread (FS) and Cochrane-Piazzesi (CP) factors. t-statistics in parentheses are
calculated using Newey and West (1987) standard errors. Adjusted R2 are given in percentage points. Trea-
sury excess returns are computed using Fama-Bliss data set, obtained from CRSP. Interest rate swaptions
and swaps data are from J.P. Morgan and Barclays Capital. Sample is from April 2002 to January 2013,
monthly frequency.

(1) (2) (3) (4) (5) (6) (7)

Panel A: maturity = 2 years

Const -0.016 -0.017 -0.022 -0.023 -0.027 -0.029
(-4.42) (-5.12) (-2.88) (-6.55) (-4.01) (-7.76)

IRVRP 0.010 0.011 0.010 0.011
(3.99) (6.39) (4.28) (6.37)

FS 1.608 1.679 1.503
(4.08) (5.22) (4.61)

CP 0.618 0.588 0.333
(2.02) (2.21) (2.02)

Adj. R2 17.86 28.06 12.37 48.86 29.24 51.96

Panel B: maturity = 3 years

Const -0.014 -0.020 -0.021 -0.028 -0.026 -0.031
(-3.34) (-5.10) (-2.45) (-6.57) (-3.34) (-7.75)

IRVRP 0.010 0.011 0.010 0.011
(3.48) (6.41) (3.68) (6.29)

FS 1.288 1.357 1.280
(4.78) (6.03) (5.69)

CP 0.646 0.617 0.211
(1.90) (2.02) (1.44)

Adj. R2 11.09 32.12 8.61 47.02 19.02 47.44

Panel C: maturity = 4 years

Const -0.012 -0.024 -0.019 -0.029 -0.024 -0.033
(-2.52) (-5.33) (-2.04) (-6.02) (-2.78) (-6.68)

IRVRP 0.011 0.010 0.010 0.010
(3.08) (4.34) (3.23) (4.36)

FS 1.157 1.140 1.086
(5.40) (6.10) (5.81)

CP 0.658 0.627 0.245
(1.72) (1.80) (1.25)

Adj. R2 7.60 30.20 5.46 37.22 12.59 37.47

Panel D: maturity = 5 years

Const -0.011 -0.026 -0.018 -0.030 -0.024 -0.032

(-1.93) (-4.87) (-1.69) (-5.22) (-2.33) (-5.21)

IRVRP 0.011 0.009 0.011 0.009
(2.70) (3.30) (2.82) (3.34)

FS 1.068 1.032 1.002
(5.31) (5.45) (5.01)

CP 0.710 0.679 0.135
(1.59) (1.63) (0.51)

Adj. R2 5.74 29.17 4.41 33.00 9.76 32.56
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Table 11: 12m HPR Bond Predictability with 10y12m Interest-rate VRP

This table presents regression results for the following regression: rx
(τ)
t+h = β

(τ)
0 + β

(τ)
1 (h)IRV RPt +∑2

j=1 β
(τ)
j (h)Ft,j + ε

(τ)
t+h, where rx

(τ)
t+h are excess returns on Treasury notes, h = 12 months and τ = 2, . . . , 5

years. IRV RPt is the interest-rate variance risk premium derived from interest rate derivatives markets,
Ft,j , j = 1, 2 is the forward spread (FS) and Cochrane-Piazzesi (CP) factors. t-statistics in parentheses are
calculated using Newey and West (1987) standard errors. Adjusted R2 are given in percentage points. Trea-
sury excess returns are computed using Fama-Bliss data set, obtained from CRSP. Interest rate swaptions
and swaps data are from J.P. Morgan and Barclays Capital. Sample is from April 2002 to January 2013,
monthly frequency.

(1) (2) (3) (4) (5) (6) (7)

Panel A: maturity = 2 years

Const 0.005 0.007 0.007 0.007 0.007 0.007
(1.77) (2.96) (2.15) (2.31) (1.84) (1.80)

IRVRP 0.001 0.001 0.001 0.001
(0.31) ( ) (0.40) (0.36) (0.40)

FS -0.534 -0.536 -0.528
(-1.62) (-1.64) (-1.59)

CP -0.107 -0.109 -0.015
(-0.81) (-0.83) (-0.10)

Adj. R2 -0.87 6.59 -0.09 5.84 -0.93 4.91

Panel B: maturity = 3 years

Const 0.012 0.015 0.017 0.014 0.016 0.017
(2.40) (2.49) (2.66) (1.99) (2.28) (2.10)

IRVRP 0.002 0.002 0.002 0.002
(0.55) (0.60) (0.62) (0.64)

FS -0.242 -0.248 -0.193
(-0.60) (-0.62) (-0.48)

CP -0.208 -0.215 -0.151
(-0.83) (-0.87) (-0.63)

Adj. R2 -0.60 0.21 -0.02 -0.35 -0.57 -0.90

Panel C: maturity = 4 years

Const 0.019 0.018 0.026 0.016 0.024 0.022
(2.80) (1.86) (2.84) (1.51) (2.37) (1.84)

IRVRP 0.006 0.006 0.007 0.006
(1.13) (1.12) (1.22) (1.19)

FS 0.230 0.189 0.273
(0.52) (0.44) (0.66)

CP -0.253 -0.271 -0.370
(-0.67) (-0.75) (-1.23)

Adj. R2 0.54 -0.02 -0.28 0.20 0.37 0.59

Panel D: maturity = 5 years

Const 0.025 0.021 0.032 0.019 0.027 0.024

(3.14) (1.77) (2.66) (1.45) (2.17) (1.74)

IRVRP 0.012 0.010 0.012 0.010
(1.75) (1.71) (1.80) (1.78)

FS 0.411 0.334 0.415
(0.98) (0.82) (1.01)

CP -0.090 -0.123 -0.358
(-0.18) (-0.27) (-0.90)

Adj. R2 2.37 2.14 -0.92 3.39 1.52 3.22
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Figure 1: The model-implied nominal yield curve
The figure plots the average zero-coupon nominal Treasury yield curve as observed in the data using the
sample of January 1991 - December 2010 monthly data as the solid blue line in both Panels (a) and (b). The
figure also plots the model-implied yield curve with the long-run risk component (Panel (a)) and without
the long-run risk component (Panel (b)) as the dashed red line.
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Figure 2: Equilibrium nominal bond yield loadings

The figure plots the model-implied nominal bond yield loadings on expected consumption growth (top left
panel), consumption volatility (top right panel), consumption volatility-of-volatility (bottom left panel), and
expected inflation (bottom right panel). Maturity on horizontal axes is in months.
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Figure 3: Interest-rate variance risk premium, 1-month horizon

This figure plots implied variance (top panel), expected variance (middle panel), and their difference, variance
risk premium (bottom panel). Implied variance is derived from the one-month expiry swaptions on the 10-
year forward swap rate. Realized variance is derived from the intraday ten-year swap rate data. Blue shaded
bar indicates NBER recession. Data source: J.P. Morgan and Barclays Capital. Sample period is from April
2002 to February 2013.
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Figure 4: Interest-rate variance risk premium, 3-month horizon

This figure plots implied variance (top panel), expected variance (middle panel), and their difference, variance
risk premium (bottom panel). Implied variance is derived from the three-month expiry swaptions on the
10-year forward swap rate. Realized variance is derived from the intraday ten-year swap rate data. Blue
shaded bar indicates NBER recession. Data source: J.P. Morgan and Barclays Capital. Sample period is
from April 2002 to February 2013.
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Figure 5: Interest-rate variance risk premium, 12-month horizon

This figure plots implied variance (top panel), expected variance (middle panel), and their difference, variance
risk premium (bottom panel). Implied variance is derived from the twelve-month expiry swaptions on the
10-year forward swap rate. Realized variance is derived from the intraday ten-year interest rate swaps data.
Blue shaded bar indicates NBER recession. Data source: J.P. Morgan and Barclays Capital. Sample period
is from April 2002 to February 2013.
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